Optuna发布4.0重大更新:多目标TPESampler自动化超参数优化速度提升显著

deephub 2024-09-06 09:55:44

Optuna这个备受欢迎的超参数优化框架在近期发布了其第四个主要版本。自2018年首次亮相以来,Optuna不断发展,现已成为机器学习领域的重要工具。其用户社区持续壮大,目前已达到以下里程碑:

10,000+ GitHub星标

每月300万+ 下载量

16,000+ 代码库使用

5,000+ 论文引用

18,000+ Kaggle的code使用

Optuna 4.0的开发重点包括:

用户间功能共享: 引入OptunaHub平台,便于共享新的采样器和可视化算法。

优化生成式AI和多样化计算环境:

正式支持Artifact Store,用于管理生成的图像和训练模型。

稳定支持NFS的JournalStorage,实现分布式优化。

核心功能增强:

多目标TPESampler的显著加速

新Terminator算法的引入

主要新特性OptunaHub: 功能共享平台

OptunaHub (hub.optuna.org) 作为Optuna的官方功能共享平台正式发布。它提供了大量优化和可视化算法,使开发者能够轻松注册和分享他们的方法。这个平台的推出预计将加速功能开发,为用户提供更多样化的第三方功能。

Artifact Store: 增强实验管理

Artifact Store是一个专门用于管理优化过程中生成文件的功能。它可以有效处理:

生成式AI输出的文本、图像和音频文件

深度学习模型的大型快照文件

这些文件可以通过Optuna Dashboard进行查看。Optuna 4.0稳定了文件上传API,并新增了artifact下载API。同时Dashboard新增了对JSONL和CSV文件的支持。

JournalStorage: 支持NFS分布式优化

JournalStorage是一种基于操作日志的新型存储方式,它简化了自定义存储后端的实现。其中,JournalFileBackend支持多种文件系统,包括NFS,可以实现跨节点的分布式优化。这对于难以设置传统数据库服务器的环境尤其有用。

使用示例:

import optunafrom optuna.storages import JournalStoragefrom optuna.storages.journal import JournalFileBackenddef objective(trial: optuna.Trial) -> float:    ...storage = JournalStorage(JournalFileBackend("./journal.log"))study = optuna.create_study(storage=storage)study.optimize(objective)

新Terminator算法

为解决超参数过拟合问题,Optuna引入了新的Terminator算法。它可以在超参数过拟合之前终止优化过程,或者帮助用户可视化过拟合开始的时间点。新版本引入了预期最小模型遗憾(EMMR)算法,以支持更广泛的用例。

约束优化增强

Optuna 4.0增强了约束优化功能,特别是:

study.best_trial和study.best_trials现在保证满足约束条件

核心算法(如TPESampler和NSGAIISampler)对约束优化的支持得到改进

多目标TPESampler的加速

多目标优化在机器学习中扮演着越来越重要的角色。例如,在翻译任务中,我们可能需要同时优化翻译质量(如BLEU分数)和响应速度。这种情况下,多目标优化比单目标优化更为复杂,通常需要更多的试验来探索不同目标之间的权衡。

TPESampler(Tree-structured Pareto Estimation Sampler)是Optuna中一个强大的采样器,它在多目标优化中展现出了优秀的性能。与默认的NSGAIISampler相比,TPESampler具有以下优势:

更高的样本效率,特别是在1000-10000次试验的范围内

能够处理动态搜索空间

支持用户定义的类别距离

在之前版本的TPESampler在处理大量试验时存在性能瓶颈,限制了其在大规模多目标优化中的应用。

性能提升

Optuna 4.0对多目标TPESampler进行了显著优化:

三目标优化场景下,200次试验的速度提高了约300倍

能够高效处理数千次试验的多目标优化

这一改进主要通过优化以下算法实现:

WFG(加权超体积增益)计算

非支配排序

HSSP(超体积子集选择问题)

TPESampler的工作原理

TPESampler基于树形Pareto估计(TPE)算法。在多目标优化中,它的工作流程如下:

将观察到的试验分为非支配解和支配解两组

为每个参数构建两个概率分布:一个基于非支配解,另一个基于支配解

使用这些分布来指导下一个试验点的选择,倾向于选择可能产生非支配解的参数值

这种方法允许算法在探索(寻找新的有希望的区域)和利用(优化已知的好区域)之间取得平衡。

使用TPESampler进行多目标优化示例

以下是使用TPESampler进行多目标优化的简单示例:

import optunadef objective(trial):    x = trial.suggest_float("x", -5, 5)    y = trial.suggest_float("y", -5, 5)    objective_1 = x**2 + y**2    objective_2 = (x - 2)**2 + (y - 2)**2    return objective_1, objective_2sampler = optuna.samplers.TPESampler()study = optuna.create_study(sampler=sampler, directions=["minimize", "minimize"])study.optimize(objective, n_trials=100)

在这个例子中,定义了一个具有两个目标的优化问题。TPESampler被用作采样器,study被设置为最小化两个目标。

基准测试结果

测试环境:

Ubuntu 20.04

Intel Core i7-1255U CPU

Python 3.9.13

NumPy 2.0.0

测试结果如图所示:

可以看到:

Optuna 4.0中双目标优化性能接近单目标优化

三目标优化在200次试验时,运行时间从约1,000秒减少到约3秒

新版本在3-5个目标的情况下仍保持高效

TPESampler vs. NSGAIISampler

虽然NSGAIISampler是Optuna中默认的多目标优化采样器,但TPESampler在某些情况下可能更为有效:

大规模优化:在1000-10000次试验的范围内,TPESampler通常表现更好

复杂搜索空间:对于具有条件参数或动态搜索空间的问题,TPESampler更为灵活

高维参数空间:TPESampler在处理高维参数空间时通常更有效

选择合适的采样器还应该基于具体问题和计算资源。可以尝试两种采样器,比较它们在特定问题上的性能。

结论与展望

Optuna 4.0通过引入新功能和优化现有算法,大幅提升了其在复杂优化任务和多样化计算环境中的适用性。特别是多目标TPESampler的性能提升,为处理更复杂的优化问题铺平了道路。

TPESampler的显著加速使得Optuna能够更有效地处理大规模多目标优化问题。这一改进对于需要同时优化多个目标的复杂机器学习任务(如大型语言模型的训练)具有重要意义。

在官方的发布中Optuna团队还提到后面的工作:

扩展问题设置的适用范围

通过OptunaHub支持更多创新算法

进一步优化性能和用户体验

改进TPESampler和其他采样器在更广泛场景下的性能

研发团队鼓励用户尝试新版本的多目标TPESampler,并欢迎社区参与到Optuna的持续发展中来。通过社区的反馈和贡献,Optuna有望在未来版本中提供更强大、更灵活的超参数优化解决方案。

https://avoid.overfit.cn/post/8d9596779bcc44a79f2a53a2a8d02e24

0 阅读:0

deephub

简介:提供专业的人工智能知识,包括CV NLP 数据挖掘等