计算机行业报告-量子信息:下一场信息革命

报告研读小助理 2024-04-07 09:09:01

报告出品方:东吴证券

以下为报告原文节选

------

1. 量子信息:量子力学与信息技术的交叉

量子的特性,带来信息科学变革的可能。量子代表的是一种不可再分的基本单位。

在微观世界,只要是不可再细分的概念,都可以叫做量子化,比如光子就是不可再分的基本粒子,所以光子也叫光量子。量子信息的两个重要特性,是得以改变信息科学的重要依据。一是量子的“叠加态”;二是量子“纠缠”。叠加态是指量子位(qubit)可以同时处于 0 和 1 的状态。这种能同时表示两种或多种状态的特性称为量子叠加。量子纠缠是指当两个或多个量子位纠缠在一起时,无论它们之间的距离有多远,一个量子位的状态改变会即刻影响到另一个。

量子信息包括量子计算、量子通信和量子测量三大领域。20 世纪 80 年代以来,量子力学与信息科学交叉,产生了一门新的学科——量子信息(quantum information)。量子信息主要包括量子计算、量子通信和量子测量三大领域,在提升计算困难问题运算处理能力、加强信息安全保护能力、提高传感测量精度等方面,具备超越经典信息技术的潜力。

2. 量子计算

2.1. 量子计算的定义与优势

量子计算按照既定的算法和程序,对量子态进行操控和测量的过程。量子态的演化过程,对应的就是一个量子计算过程。量子计算是量子信息技术的核心。没有量子计算,量子技术其他领域的发展,不足以动摇现有信息技术的根基。

量子计算利用的是量子叠加的特性。多个量子比特与同样数目的经典比特比较,差别是指数级的。N 个经典比特一次表示的数字只有 1 个,N 个量子比特一次能表示的数字数目为 2 的 N 次方。当 N=250 时,可以表示的数字数目比宇宙中所有原子的数目还要多。

量子计算以量子比特为基本单元,对传统计算机来说,两个比特能表示四个数,也就是 00、01、10、11,但某个具体的时刻只能有一个值。但对于两个量子比特,这四个值可以同时存在。随着量子比特数的增加,能同时表示的数也会指数级的增加,N 个量子比特就可以同时有 2 的 N 次方个值,这就相当于在同一个时刻,可以进行 2 的 N 次方个运算。

与经典计算机不同,量子计算机的算力随量子比特的数目不是线性增加,而是指数增加的。

2.2. 量子计算的发展现状与瓶颈

在目前阶段,实验室能够制备的量子比特的退相干时间不够长,操控的精度也有限,还远未达到要实现量子计算指数加速的要求。

量子计算在理论和实验层面都经历了多个发展历程,主要有以下几个阶段。

初步概念阶段(1980-1994):1980 年代初期,Paul Benioff 提出将量子力学原理用于模拟图灵机的想法,成为量子计算理论研究的起点。理查德·费曼(Richard Feynman)和大卫·多伊奇(David Deutsch)分别于 1982 年和 1985 年提出了量子系统和量子图灵机的概念。

算法和理论发展阶段(1994-2000):1994 年,彼得·秀尔(Peter Shor)发明了 Shor算法,证明了量子计算机在解决特定问题上超越经典计算机的潜力。1996 年鲁弗(Lov Grover)发明了 Grover 算法,可以在无序数据库中以平方根的时间复杂度查找特定元素。

实验验证和技术进步阶段(2001-2010):研究小组开始使用不同的物理系统(如离子陷阱、超导电路、光子等)实现量子比特和量子逻辑门,证实了量子计算的实际可行性。

商业化和标准化阶段(2011-现在):2011 年以后,随着技术的成熟和投资的增加,多家公司(例如 Google、IBM、Intel、Rigetti Computing 等)开始研发量子计算机,并通过云服务形式提供用户远程访问量子计算资源。

从上世纪八十年代开始,量子计算经过了基本物理思想和初级原理的验证,现在进入了所谓的“中等规模带噪声的量子计算时代”。“中等规模”是指现在能比较可靠操控的量子比特数大约在几十到几千的水平;“带噪声”指的是对量子比特的门操作有一定的误差,量子态的读取也存在一定错误,还无法实现精确的量子计算。这是量子计算技术发展必然要经过的一个阶段,也是量子计算各种路线探索和人才积累的关键阶段。

近年来量子计算应用探索广泛开展,但目前尚未在实用化问题中展现出有现实意义的量子计算优越性,仍处于原理性与可行性验证的探索阶段。

量子处理器硬件性能水平距离实现大规模可容错通用量子计算还有很大差距。中国信通院技术与标准研究所所长张海懿表示,当前,在量子计算领域,超导、离子阱、光量子、中性原子、硅半导体、金刚石色心和拓扑等主要技术路线并行发展,整体上依然处于中等规模含噪声量子处理器阶段,量子纠错已实验验证突破盈亏平衡点。超导技术路线是有望率先实现量子纠错和突破杀手级应用的“种子选手”之一,中性原子路线今年在技术路线竞争中异军突起,量子物理比特规模提升和纠错实验发展迅速,有望成为一匹“黑马”。总体来说,未来仍需业界长期艰苦努力攻关。

量子计算机发展的制约因素主要有以下几个方面:

温度限制:全球各地的量子计算机都只能在约 0.1 开尔文(-273.05℃)的极寒温度下工作,然而实现这种低温又是超导量子的特性,不在低温下就发挥不出来,而达到这样的温度需要数百万美元的制冷。随着量子计算机的运算能力越强,需要的制冷设备就越多,要求也就越高。

技术限制:量子计算机对硬件技术的依赖度极高,主要是实现不了编码逻辑比特,其次还有系统扩展、逻辑门精度、相干消等几个方面,其次,除了要有基础的硬件,对比经典计算机,量子计算也需要有软件、算法以及云平台等技术的支持。要实现其量子纠缠等技术特性,需要一系列高端材料和设备的支持。其中,超导电子学和纳米加工技术是量子计算机实现所必须的,其发展趋势与成熟程度都会对其应用产生严重影响。

应用限制:目前量子计算机应用场景非常有限,主要在化学、金融、优化等领域。

但对于传统的数据中心应用和人工智能应用并不适应。虽然量子计算机对于某些领域问题的解决速度非常迅速,但对于其他问题则会显得非常低效,这也限制了它的应用场景。

量子计算未来的发展趋势,主要在三个方面:一是规模化,当前量子计算能比较可靠操控的量子比特数大约在 100 个量子比特左右,今后将逐渐达到几千、几万、几十万、几百万甚至更高的水平。二是容错化,量子计算需要很多量子比特,但更需要制备出相干时间可以任意长、错误率小于纠错阈值的所谓容错的逻辑量子比特。三是集成化,目的是实现对大量量子比特及其测控系统集成和小型化,是降低量子计算机的研发成本、实现量子计算机广泛应用的前提。

如果对未来做一个展望的话,乐观地估计,十到二十年之后,高质量制备和操控的量子比特数将达到上万个,在这个基础上,通过对大量量子比特的不断纠错,有望制备出一个能容错的逻辑量子比特;再过十到二十年,有希望实现对多个逻辑量子比特和普适逻辑门的相干操控,并且在这样的基础上,制造出普适的量子计算机。到那时,量子信息技术及应用将进入全面高速发展阶段,也将成为人类征服自然的一个新的里程碑!

2.3. 量子计算的主要应用场景

量子计算机能够实现量子傅里叶变换、量子搜索和量子因式分解等复杂计算,将深刻影响密码学、材料科学、人工智能等领域:

1)密码学:由于 Shor's algorithm 可以用来破解某些传统加密技术,因此需要开发新的加密技术保护数据的安全性。基于量子密钥分发(QKD)技术的加密技术已经被提出并得到了广泛研究。

2)材料科学:传统计算机可以使用分子动力学(MD)模拟分子和材料结构,但分子和材料结构非常复杂,需要大量的计算资源。在量子计算机中,可以使用量子模拟器来模拟分子和材料结构。这将有助于加快新材料和新药物的研发过程。

3)人工智能:由于量子比特可以处于多个状态,因此可以使用量子神经网络来处理大规模数据集和复杂模型。这将有助于提高人工智能系统的性能,并推动人工智能技术向前发展。

应用探索成业界热点,行业领域趋向多元化。基于中等规模含噪量子处理器(NISQ)和专用量子计算机的应用案例探索在国内外广泛开展,代表性应用领域和典型场景涵盖了化学、金融、人工智能、交运航空、气象等众多行业领域,产业规模估值达到千亿美元级别。

2.4. 量子计算主要技术路线

当前量子计算各技术路线的性能指标发展水平参差不齐,但距离实现大规模可容错通用量子计算的目标都还有很大差距:1)超导路线:在量子比特数量、逻辑门保真度等指标方面表现较为均衡;2)离子阱路线:在逻辑门保真度和相干时间方面优势明显,但比特数量和门操作速度方面瓶颈也同样突出;3)光量子和硅半导体路线目前在比特数量、逻辑门保真度和相干时间等指标方面均未展现出明显优势;4)中性原子近年来在比特数量规模、门保真度和相干时间等指标方面提升迅速。

量子计算硬件有多种技术路线并行发展,主要可分为两大类:1)以超导和硅半导体等为代表的人造粒子路线,2)以离子阱、光量子和中性原子为代表的天然粒子路线。

人造粒子路线:可重用半导体集成电路制造工艺,在比特数量扩展方面具有一定优势,但在提升逻辑门精度等指标方面受到基础材料和加工工艺等限制。

天然粒子路线:具有长相干时间和高逻辑门精度等优势,但在比特数量扩展等方面面临挑战。近年来,各种主要技术路线均有研究成果不断涌现,呈现开放竞争态势,尚无某种技术路线体现出明显综合优势。

超导技术路线是量子计算领域业界关注度最高的发展方向。离子阱路线能否在量子计算技术路线竞争中占据优势仍有待进一步观察。光量子路线中专用光量子计算近年来研发成果较多。硅半导体路线的比特数量和操控精度等指标提升缓慢。中性原子路线有望成为技术路线竞争中的后起之秀。超导技术路线的比特数量操控精度和相干时间等关键指标提升迅速且发展较为均衡,是有望率先实现量子纠错和突破杀手级应用的“种子选手”。

2.5. 量子计算市场空间

2.5. 量子计算市场空间2035 年总市场规模有望达到 8117 亿美元。2023 年,全球量子产业规模达到 47 亿美元,2023 至 2028 年的年平均增长率(CAGR)达到 44.8%,基本符合行业发展规律。

2027 年,专用量子计算机预计将实现性能突破,带动整体市场规模达到 105.4 亿美元。

在 2028 年至 2035 年,市场规模将继续迅速扩大,受益于通用量子计算机的技术进步和专用量子计算机在特定领域的广泛应用,到 2035 年总市场规模有望达到 8117 亿美元。

这一接近万亿级别的市场规模标志着量子计算会在此进入全面成熟和商业化的关键阶段,预示着未来量子计算将在各个领域带来深远而持久的影响。

上游市场在量子计算领域的发展至关重要,主要分为量子比特环境、量子比特测量与控制系统、量子芯片以及其他。技术进步、应用领域的扩大、政策支持、投资增加以及商业化的挑战和机遇等因素,共同推动了量子计算市场的快速发展。从 2023 年到 2035年,上游市场规模呈现出显著的增长趋势,市场总规模由 2023 年不到 20 亿美元增长到2035 年千亿美元。

量子比特测量与控制系统市场规模增长最为迅猛,从 2023 年的几亿美元到 2030 年的 316 亿美元,最后增长到 2035 年的 1444 亿美元。测量和控制系统对于保持量子比特的相干性和实现量子计算任务至关重要,而技术的发展推动了对更为精密、高效的测量和控制系统的持续需求增加。

量子芯片市场规模到 2030 年以及 2035 年均有指数级别的增长。量子芯片作为量子计算的核心组件,对实现量子计算任务具有至关重要的作用。随着对量子计算性能要求的提高,对更先进、可扩展的量子芯片的需求持续上升。

2.6. 量子计算产业链

产业生态上游主要包含环境支撑系统、测控系统、各类关键设备组件以及元器件等,是研制量子计算原型机的必要保障。目前由于技术路线未收敛、硬件研制个性化需求多等原因,上游供应链存在碎片化问题,逐一突破攻关存在难度,一定程度上限制了上游企业的发展。国内外情况对比而言,上游企业以欧美居多,部分头部企业占据较大市场份额,我国部分关键设备和元器件对外依赖程度较高。

产业生态中游主要涉及量子计算原型机和软件,其中原型机是产业生态的核心部分,目前超导、离子阱、光量子、硅半导体和中性原子等技术路线发展较快,其中超导路线备受青睐,离子、光量子和中性原子路线获得较多初创企业关注。美国原型机研制与软件研发占据一定优势,我国量子计算硬件企业数量有限且技术路线布局较为单一,集中在超导和离子阱路线,量子计算软件企业存在数量规模较少、创新成果有限、应用探索推动力等问题。

产业生态下游主要涵盖量子计算云平台以及行业应用,处在早期发展阶段。近年来全球已有数十家公司和研究机构推出了不同类型的量子计算云平台积极争夺产业生态地位。目前量子计算领域应用探索已在金融、化工、人工智能、医药、汽车、能源等领域广泛开展。国外量子计算云平台的优势体现在后端硬件性能、软硬件协同程度、商业服务模式等方面。大量欧美行业头部企业成立量子计算研究团队,与量子企业联合开展应用研究,我国下游行业用户对量子计算重视程度有限,开展应用探索动力仍需提升。

2.7. 量子计算全球进展

谷歌采用超导路线,最新 Sycamore 量子处理器目前拥有 70 个量子比特。谷歌的量子优势实验基于他们的超导量子芯片 Sycamore,利用交叉熵基准,谷歌量子计算研究人员观察到了阶段边界,由此定义噪声量子演化的计算复杂性。在模拟的估计计算成本,比起经典计算机,53 量子比特完成 1 百万个噪音样本比其快 6.18 秒。而 70 量子比特要快 47.2 年。

微软预计 10 年内完成量子超级计算机的构建。公司将未来量子计算分为基础、弹性和规模三个级别。基础阶段,在噪声物理量子比特上运行的量子系统,微软已经将量子机器带到了 Azure Quantum 的云端,包括 IonQ, Pasqal, Quantinuum, QCI 和Rigetti。弹性阶段,从嘈杂的物理量子比特过渡到可靠的逻辑量子比特,增加每个逻辑量子比特的物理量子比特数,使物理量子比特更稳定,或者两者兼而有之;规模阶段,设计出一台规模化的、可编程的量子超级计算机,这样的量子超级计算机至少需要 100万个每秒可靠的量子操作数(rQOPS)。

IBM 推出新型模块化系统,瞄准 2033 年超级计算机。2023 年 12 月,IBM 公司推出了 133 量子位的量子处理器 IBM Quantum Heron,可提供迄今为止 IBM 最高的性能指标和最低的错误率,同时展示了一种新方法,将机器内部的处理器连接在一起,然后将机器连接在一起,以形成模块化系统,当与新的纠错代码相结合时,有望在 2033 年生产出引人注目的量子机器:包括 1000 个逻辑量子比特的超级计算机,全面释放量子计算的能量。

实现 Condor 处理器,拥有 1121 个超导量子位。Condor 突破了芯片设计的规模和产量极限,量子比特密度提高了 50%,在量子比特制造和层压板尺寸方面取得了进步,并在单个稀释制冷器中包含超过一英里的高密度低温柔性 IO 接线。性能可与 433 量子比特的 Osprey 相媲美。多年来,IBM 一直遵循量子计算路线图,每年将量子比特数量增加约一倍。

中科院团队成功构建 255 个光子的量子计算原型机“九章三号”,科研人员设计了时空解复用的光子探测新方法,构建了高保真度的准光子数可分辨探测器,提升了光子操纵水平和量子计算复杂度。根据公开正式发表的经典精确采样算法,“九章三号”处理高斯玻色取样的速度比上一代“九章二号”提升一百万倍。其在百万分之一秒时间内所处理的最高复杂度的样本,需要当前最强的超级计算机“Frontier”花费超过二百亿年的时间。

“祖冲之二号”量子计算机可操纵的量子比特数达到 176 比特。祖冲之二号采用大规模并行处理的硬件结构和智能的调度和管理系统,可以实现处理器核心之间的快速通信和数据传输,有效地避免资源浪费和处理能力不均衡的问题。其单比特门、两比特门和读取保真度分别为 99.84%、99.40%和 97.74%,相比之下,谷歌“悬铃木”在其“量子计算优越性”实验中的三项保真度分别为 99.84%、99.38%和 96.20%。

3. 量子通信

3.1. 量子通信的定义与分类

量子通信是利用物理实体粒子(如光子、原子、分子、离子)的某个物理量的量子态作为信息编码的载体,通过量子信道将该量子态进行传输到达传递信息目的,是量子信息科学的重要研究分支。其核心在于以量子态来编码信息并传输,其通信过程服从量子不确定性原理、量子相干叠加和量子非定域性等量子力学的基本物理原理。

量子通信主要包括量子密钥分发、量子隐形传态和量子保密通信网络三种技术。

量子密钥分发(QKD)应用了量子力学的基本特性,确保任何企图窃取传送中的密钥都会被合法用户所发现。窃听者如果要窃听量子密码,必须进行相应的测量,而根据不确定性原理和量子不可克隆性,一旦测量必定会对量子系统造成影响,从而改变量子系统的状态。

利用量子纠缠态的量子通讯就是“量子隐形传态”(quantumteleportation)。“量子密钥分发”只是利用量子的不可克隆性,对信息进行加密,属于解决密钥问题。而“量子隐形传态”是利用量子的纠缠态,来传输量子比特。

量子隐形传态的原理。量子隐形传态方式的载体是单个粒子,如单个光子或单个电子,利用其内在的微观的行为特征,如粒子的自施方向,利用量子纠缠效应让量子通信传输的不再是传统信息,而是量子态携带的量子信息。举例来说,两个处于纠缠态的粒子 A 和 B,无论相隔多远,只要把其中一个粒子(A)和携带想要传输的量子比特的粒子(C)一起测量,C 的量子比特马上消失,但是相隔遥远的粒子(B)却立刻携带上了C 之前携带的量子比特。这就是在量子纠缠的帮助下,待传输的量子态不需要任何载体的携带,在一个地方神秘地消失,又在另一个地方神秘地出现。

量子保密通信网络核心设备包括 QKD 产品、信道与密钥组网交换产品等。目前能够实现的量子保密通信网络,包括局域网、城域网和骨干网。

局域网实现一个单位或一处地点内多个终端的接入,对距离要求不高;城域网负责城市范围内不同区域的连接,上联骨干网,下联局域网;而骨干网实现跨省、跨城的连接(包括地面光纤和卫星-地面站两种实现方式),现阶段以地面光纤为主,对距离要求高。

量子城域网是一种可覆盖整个城市的量子密钥分发网络。在与传统通信网络相结合后,能实现基于量子安全技术的高等级安全通信服务,为涉及国计民生的政务、金融、电力等重要信息提供保障。2022 年 8 月,安徽合肥开通了当时全国最大、覆盖最广、应用最多的量子城域网——合肥量子城域网,包含 8 个核心网站点和 159 个接入网站点,光纤全长 1147 公里。

在量子广域网方面,2021 年 1 月,中国科学技术大学宣布中国科研团队成功实现了跨越 4600 公里的星地量子密钥分发,此举标志着我国已成功构建出天地一体化广域量子通信网络,为未来实现覆盖全球的量子保密通信网络奠定了科学与技术基础。

抗量子密码(PQC),也称后量子密码,是能够抵抗量子计算对公钥密码算法攻击的新一代密码算法,旨在研究密码算法在量子环境下的安全性,并设计在经典和量子环境下均具有安全性的密码系统。其基于数学原理,以软件和算法为主,依赖计算复杂度,易于实现标准化、集成化、芯片化、小型化和低成本,能够提供完整的加密、身份认证和数字签名等解决方案。PQC 的出现,可有效地防止攻击者窃取和破解加密信息,为网络信息安全提供保障。

Shor 算法的出现,意味着 RSA 加密在理论上已经不再安全。1994 年,美国科学家 Peter Shor 提出了著名的 Shor 算法,在理论上展示了一个足够强大的量子计算机能将质因数分解的时间复杂性降到多项式时间内。随着量子计算软硬件技术飞速发展,现代密码体系的崩溃也不再是理论上的风险。以 RSA-2048 算法为例,Shor 算法破解效率大约是经典算法的 10(43) 倍。2021 年,业内分别预估了 Shor 算法破解 RSA2048、ECDSA 的成本,大约需要 2000 万量子比特,耗时几小时内。

3.2. 量子通信的发展现状

量子通信领域的量子密钥分发(OKD)技术初步实用化,多种协议类型的 OKD 系统在国内外已经实现商用,但商用 OKD 系统的性能仍有明显瓶颈,例如,单跨段现网光纤传输距离通常在数十 km 范围,密钥成码率通常为数 kbps 至数十 kbps 量级。进一步提升 OKD 系统的传输距离和密钥成码率,对于远距离传输、组网和高带宽加密业务应用等具有重要意义,也是提升 OKD 技术实用化水平,破解应用推广与产业发展困境的必由之路。

量子信息网络目前主要处于基础研究与实验探索阶段,关键技术与使能组件仍有技术瓶颈尚未突破,实用化前景尚不明确,但其实现量子计算机互联组网,指数级提升量子信息处理能力的应用潜力较大。已成为欧美国家布局的重点发展方向之一。近年来,欧美研究机构和行业组织等,通过合作项目、组网实验和平台建设等多种方式,加快推动技术试验与测试验证。

陆地部分:QKD 基础设施网络建设。

美国:纽约大学量子信息物理学中心(CQIP)和量子安全网络技术公司 Qunnect 合作,使用 Qunnect 的量子安全网络技术,通过纽约市的标准电信光纤发送量子信息,成功测试了布鲁克林海军造船厂和纽约大学曼哈顿校区之间 10 英里(16 公里)量子网络链路。在 10 英里的光纤中,Qunnect 和 CQIP 实现了以每秒 15000 对的速度传输高度纠缠的量子比特通过光缆,测试过程中链路正常运行时间达到 99%。此次实验打开了纽约都市区的金融服务、关键基础设施和电信公司试点量子网络技术的大门。

中国:由国科量子建设和运营的长三角区域量子保密通信骨干网建设成果于 2023年 6 月在第五届长三角一体化发展高层论坛上正式发布。长三角量子网络线路总里程约2860 公里,形成了以合肥、上海为核心节点,链接南京、杭州、无锡、金华、芜湖等城市的环网,通过量子业务运营支撑系统及量子卫星调度系统,为星地一体量子保密通信网络提供全方位保障。

太空部分:卫星通信建设。

美国:QuSecure 推出首个具有量子弹性的实时端到端卫星加密通信链路,这一里程碑标志着美国卫星数据传输首次采用 PQC 来抵御经典和量子解密攻击,以保护卫星数据通信的安全性。QuSecure 的量子弹性加密通信链路可以使任何联邦政府和商业组织都能够通过太空进行实时、安全、经典和量子安全的通信和数据传输。在星链网络上的安全卫星通信测试中,QuSecure 成功地将量子弹性数据从 Quark 服务器通过科罗拉多州Rearden Logic 的实验室发送到星链终端。然后通过上行链路将信号发送到 Starlink 卫星,再通过下行链路传回地球。所有这些通信均受到 QuSecure 的量子安全层(Quantum Secure Layer, QSL)的保护,通过 PQC 网络安全保护传输中的所有数据。

美国纳米卫星服务提供商 Sky and Space(SAS)宣布与 CyberProtonics 建立合作伙伴关系。CyberProtonics 将为 SAS 公司的纳米卫星和地面终端机群嵌入 PQC 技术,为2024 年初的发射做准备。这一合作将确保卫星通信的安全性,为未来的卫星网络提供了更强的数据保护。

--- 报告摘录结束 更多内容请阅读报告原文 ---

报告合集专题一览 X 由【报告派】定期整理更新

(特别说明:本文来源于公开资料,摘录内容仅供参考,不构成任何投资建议,如需使用请参阅报告原文。)

精选报告来源:报告派

科技 / 电子 / 半导体 /

人工智能 | Ai产业 | Ai芯片 | 智能家居 | 智能音箱 | 智能语音 | 智能家电 | 智能照明 | 智能马桶 | 智能终端 | 智能门锁 | 智能手机 | 可穿戴设备 |半导体 | 芯片产业 | 第三代半导体 | 蓝牙 | 晶圆 | 功率半导体 | 5G | GA射频 | IGBT | SIC GA | SIC GAN | 分立器件 | 化合物 | 晶圆 | 封装封测 | 显示器 | LED | OLED | LED封装 | LED芯片 | LED照明 | 柔性折叠屏 | 电子元器件 | 光电子 | 消费电子 | 电子FPC | 电路板 | 集成电路 | 元宇宙 | 区块链 | NFT数字藏品 | 虚拟货币 | 比特币 | 数字货币 | 资产管理 | 保险行业 | 保险科技 | 财产保险 |

1 阅读:130