向具有光速能力的计算机的一次充满希望的飞跃

量子力学的梦 2024-03-02 20:06:43

该团队的可重新编程的基于光的处理器。图片来源:Will Wright,皇家墨尔本理工大学

科学家们创造了一种世界首创的可重新编程的基于光的处理器,他们说这可能会开创量子计算和通信的新时代。

这些在原子水平上运行的新兴领域的技术已经为药物发现和其他小规模应用带来了巨大的好处。

未来,大规模量子计算机有望解决当今计算机无法解决的复杂问题。

澳大利亚皇家墨尔本理工大学的首席研究员阿尔贝托·佩鲁佐教授表示,该团队的处理器——一种使用光粒子携带信息的光子设备——可以通过最大限度地减少“光损失”来帮助实现成功的量子计算。

ARC 量子计算和通信技术卓越中心 (CQC2T) 节点负责人 Peruzzo 表示:“我们的设计使量子光子量子计算机在光损失方面更加高效,这对于保持计算继续进行至关重要。”在皇家墨尔本理工大学。

“如果失去光线,就必须重新开始计算。”

佩鲁佐说,其他潜在的进步包括改进“不可破解”通信系统的数据传输能力以及增强环境监测和医疗保健中的传感应用。

What did the team achieve?团队取得了什么成就?该团队对光子处理器进行了重新编程,在一系列实验中通过施加不同的电压,成功实现了相当于2,500个设备的性能。他们的结果和分析已在《Nature Communications》上发表。

佩鲁佐说:“这项创新可能会为量子光子处理器带来更加紧凑和可扩展的平台。”

杨阳,主要作者,皇家墨尔本理工大学博士学者表示,该设备“完全可控”,能够快速重新编程,降低功耗,并取代了制造许多定制设备的需要。

“我们在单个设备上通过实验演示了不同的物理动力学,”他说。

“这就像有一个开关来控制粒子的行为方式,这对于理解量子世界和创造新的量子技术都很有用。”

意大利特伦托大学的 Mirko Lobino 教授利用一种名为铌酸锂的晶体制作了创新的光子器件,美国印第安纳大学普渡大学印第安纳波利斯分校的 Yogesh Joglekar 教授带来了他在凝聚态物理方面的专业知识。

铌酸锂具有独特的光学和电光特性,使其成为光学和光子学领域各种应用的理想选择。

洛比诺说:“我的团队参与了该设备的制造,这特别具有挑战性,因为我们必须微型化波导顶部的大量电极才能实现这种水平的可重构性。”

Joglekar 表示:“可编程光子处理器为探索这些设备中的一系列现象提供了一条新途径,这将有可能释放技术和科学方面令人难以置信的进步。”

又一次质的飞跃?

与此同时,Peruzzo 的团队还开发了世界首个混合系统,将机器学习与建模相结合,对光子处理器进行编程并帮助控制量子设备。

佩鲁佐表示,量子计算机的控制对于确保数据处理的准确性和效率至关重要。

“设备输出精度面临的最大挑战之一是噪声,它描述了量子环境中影响量子位性能的干扰,”他说。

量子比特是量子计算的基本单位。

佩鲁佐说:“许多行业都在开发全面的量子计算,但他们仍在与噪声引起的错误和低效率作斗争。”

佩鲁佐说,控制量子位的尝试通常依赖于关于噪声是什么以及噪声产生原因的假设。

“我们没有做出假设,而是开发了一种协议,该协议使用机器学习来研究噪声,同时使用建模来预测系统对噪声的响应,”他说。

佩鲁佐表示,通过使用量子光子处理器,这种混合方法可以帮助量子计算机更精确、更高效地运行,从而影响我们未来控制量子设备的方式。

“我们相信我们的新混合方法有潜力成为量子计算的主流控制方法,”佩鲁佐说。

主要作者、皇家墨尔本理工大学的 Akram Youssry 博士表示,新开发方法的结果显示出相对于传统建模和控制方法的显着改进,并且可以应用于光子处理器之外的其他量子设备。

“该方法帮助我们发现和理解我们的设备超出了该技术已知物理模型的方面,”他说。

“这将帮助我们在未来设计出更好的设备。”

“实验灰盒量子系统识别与控制”发表于npj量子信息。

下一步

佩鲁佐表示,可以围绕他团队的光子器件设计和量子控制方法创建量子计算领域的初创公司,他们将继续研究其应用及其“全部潜力”。

“量子光子学是最有前途的量子产业之一,因为光子产业和制造基础设施非常完善,”他说。

“在某些任务中,量子机器学习算法比其他方法具有潜在优势,特别是在处理大型数据集时。”

“想象一个世界,计算机的运行速度比今天快数百万倍,我们可以安全地发送信息而不必担心信息被拦截,并且我们可以在几秒钟内解决目前需要数年的问题。”

“这不仅仅是幻想——这是由量子技术驱动的潜在未来,而像我们这样的研究正在铺平道路。”

更多信息:Akram Youssry 等人,实验性灰盒量子系统识别与控制,npj Quantum Information (2024)。 DOI:10.1038/s41534-023-00795-5

Yang Yang et al, Programmable high-dimensional Hamiltonian in a photonic waveguide array, Nature Communications (2024). DOI: 10.1038/s41467-023-44185-zYang Yang 等人,光子波导阵列中的可编程高维哈密顿量,Nature Communications(2024 年)。 DOI:10.1038/s41467-023-44185-z

Journal information: Nature Communications , npj Quantum Information期刊信息:Nature Communicationsnpj量子信息,

0 阅读:169
评论列表
  • 2024-03-03 09:52

    光的电磁波理论遇到最大的难题就是解释光电效应实验。我已经成功地用电磁感应原理完美地解释了光电效应实验。而且还完美地解释了假设的光子撞击电子为什么电子的逸出方与入射光方向无关的问题。而用偏振光做光电效应实验却对逸出电子的逸出方向相关!而且还能解释少量逸出电子的能量与入射光的能量成倍增加。而这些把光假设成粒子是无法解释光电效应的这些实验结果的。唯有用电磁感应原理来解释光电效应实验才能完美地解释这些实验结果。既然不存在“光量子”何来的量子通信?如果真的存在量子纠缠,那么用电子纠缠来做量子通信是最容易实现的。先制备一对纠缠态的电子把其中一个电子用导体移动到另一端(可以是1米或几万K米),然后测量其中一个电子的状态另一个电子的状态就确定了,这样就可以做出真正的量子通信了!而不用激光来骗人了。目前世界上根本就没有人能做出真正的纠缠态电子对,所以只能用偏振光的交织说成是什么光子纠缠来骗人其实本质上还是激光通信。

  • 2024-03-03 09:52

    所谓的光的双缝干涉一观察就会坍塌是某些科学家选择性眼瞎?因为用最简单最原始的实验无论你怎么观察双缝干涉条纹都不会消失。很简单用一黑纸皮刻2条相互靠近的双缝,在一个暗室用激光笔照射双缝选择适当的距离用白色的墙壁做屏幕即可,就可以稳定地观察到光的双缝干涉条纹。无论你用什么角度,用双眼或者用单眼观察干涉条纹都不会消失,无论用胶片相机还是数码相机拍照干涉条纹也不会消!何来的一观察就坍塌?也许他们的所谓观察是在双缝上装探测器,这样的所谓观察难道不是因为所装的探测器影响光干涉的条件吗?这种观察难道不是选择性眼瞎吗?我不明白为什么那么多科学家会选择性眼瞎!假如光是粒子是正确的,在双缝上装上探测器,当单个“光子”通过时如果进入探测器那么它就无法到达屏幕,因为按这个假设无论它是真正的粒子还是所谓的能量子它通过探测器时只有被它吸收了才能探测到,被探测器吸收了那它就无法去到荧屏。如果“光子”能通过探测器到达荧屏那么探测器就探测不到它!因此这种所谓的探测实验是根本做不出来的,电子双缝双实验原理也是一样的。能做出来就说明自称所谓的单“光子”或单电子是假的,而是有部分光波或电子被探测器捕获一部分通过双缝到达荧屏

  • 2024-03-03 09:51

    要理解光波我觉得可以和水波对应起来。把一潭平静的湖水看作是真空中的磁场,把一颗小石子看作是电子,当把一颗小石子投入平静的湖水时会激荡起水波,就象电子振动产生电磁波一样。水波观察起来就比电磁波直观多了。水波就是传递这颗小石子的能量波,相对于电磁波就是传递电子振动的能量波了。我对原子模型的理解是电子是以一定的固定阵列分布在原子核周围,在不同势能位电子振动的固有频率不同,所以不同原素会有对应的光谱线。拉曼效应就是原子的电子振动固有频率的最好证明。温度反映的就原子中电子振动程度。所有能量的传递都是靠电磁感应(电磁波)来传递的。光电效应就是电磁感应原理产生的。赫兹发现电磁波的实验其实就是最早的光电效应实验,只是其用的是不可见光(高频电磁波)。这样所有物理学理论都串联起来了,而且所有理论都通顺了!现有的原子模型也应该是错误的,电子并非绕核旋转,而是在某一固定阵列位置按固有频率在振动。

量子力学的梦

简介:感谢大家的关注