嵌入模型是大型语言模型检索增强生成(RAG)的关键组成部分。它们对知识库和用户编写的查询进行编码。
使用与LLM相同领域的训练或微调的嵌入模型可以显著改进RAG系统。然而,寻找或训练这样的嵌入模型往往是一项困难的任务,因为领域内的数据通常是稀缺的。
但是这篇论文LLM2Vec,可以将任何的LLM转换为文本嵌入模型,这样我们就可以直接使用现有的大语言模型的信息进行RAG了。
嵌入模型和生成模型嵌入模型主要用于将文本数据转换为数值形式的向量表示,这些向量能够捕捉单词、短语或整个文档的语义信息。这些向量表示也被称为嵌入(embeddings),可以用于各种下游任务,如文本分类、搜索、相似度计算等。
最有名的嵌入模型就是BERT是一个典型的encoder-only模型
生成模型则设计用来基于训练数据生成新的数据实例。在NLP中,这通常意味着生成文本。这类模型能够学习到数据的分布,并能创造出符合这一分布的新实例,如新的句子或文档。
如GPT系列,通常是decoder-only模型。
这两种架构在设计和应用上有所不同:
BERT (Encoder-only):BERT利用双向Transformer编码器,这意味着它在处理文本时可以同时考虑前面和后面的上下文。这种双向上下文理解使得BERT非常适合用于各种理解任务,如问答、自然语言推理和实体识别等。
LLM (Decoder-only):如GPT系列模型,通常采用单向Transformer解码器。这意味着在生成文本时,每个新词只能基于前面的词生成。这种结构适合于文本生成任务,如文本续写、自动编写程序代码等。
在论文中对encoder-only和decoder-only模型的特点进行了讨论,特别是在解释为什么将decoder-only的大型语言模型(LLM)转换为有效的文本编码器时。论文指出了几个关键点:
Decoder-only模型的局限性:这些模型,如GPT系列,使用因果(单向)注意力机制。这意味着在生成文本时,每个标记只能看到它之前的标记。这种结构虽然适合文本生成,但在需要丰富的上下文信息(如文本嵌入任务)时可能不够理想。
克服Decoder-only模型的限制:论文中提出的LLM2Vec方法特别通过几个步骤来克服这些限制,包括启用双向注意力,这使得模型能够在处理文本时同时考虑前后文本,从而生成更丰富的上下文表示。
与Encoder-only模型的对比:论文比较了使用LLM2Vec转换的decoder-only模型与传统的encoder-only模型(如BERT)。结果显示,通过适当的转换和训练,原本设计为decoder-only的模型在多个文本嵌入任务上能够达到甚至超过传统encoder-only模型的性能。
这表明,尽管decoder-only和encoder-only模型在设计和功能上有本质的不同,但通过创新的方法可以扩展或改变这些模型的能力,使它们适应更广泛的应用场景。
其实我们可以将这篇论文的重点简单的理解为,如何将一个decoder-only的模型快速并且无损的转换成一个encoder-only模型。
LLM2Vec在论文中提出了一种名为LLM2Vec的方法,用于将仅解码器的大型语言模型(LLM)转换为强大的文本编码器。这种方法包括三个简单的步骤:1)启用双向注意力;2)蒙版下一个标记预测;3)无监督对比学习。这种转换不需要标记数据,且在数据和参数上都非常高效。
具体来说,研究中首先解决了LLM在文本嵌入任务中由于其因果关注机制而受限的问题,该机制仅允许标记与其前面的标记交互。通过启用双向注意力,每个标记能够访问序列中的所有其他标记,从而转换为双向LLM。然后,通过蒙版下一个标记预测(MNTP),调整模型以利用其双向注意力。最后,应用无监督对比学习以改进序列表示。
这些步骤的组合不仅在单词级任务上提升了模型的性能,还在大规模文本嵌入基准(MTEB)上达到了新的无监督性能水平。此外,当将LLM2Vec与监督对比学习相结合时,还在仅使用公开可用数据的模型中实现了最先进的性能。这表明,通过这种简单且有效的方法,原本仅用于生成任务的解码器模型也能被转化为通用的文本编码器,从而在多种NLP任务中表现出色。
方法详解论文中描述的LLM2Vec方法在代码层面主要涉及以下几个关键的修改,以将decoder-only模型转换为能够生成丰富文本编码的模型:
启用双向注意力:通常,decoder-only模型使用的是单向(因果)注意力机制,这限制了模型只能看到当前标记之前的信息。为了转换这一点,论文中提到通过替换因果注意力掩码(causal attention mask)为全1矩阵,使得每个标记都能看到序列中的所有其他标记,从而实现双向注意力。
蒙版下一个标记预测(MNTP):这是一个训练目标,结合了下一个标记预测和蒙版语言模型的元素。具体来说,首先在输入序列中随机蒙版一些标记,然后训练模型预测这些蒙版的标记,同时考虑前后文。这种训练方式帮助模型适应其新的双向注意力能力。
无监督对比学习:使用SimCSE(Simple Contrastive Learning of Sentence Embeddings)方法,这种方法通过对同一句子生成两个不同的嵌入表示,并训练模型最大化这两个表示之间的相似度,同时最小化与批次中其他不相关句子表示的相似度。这一步骤不需要配对数据,可以使用任何文本集合。
这些代码修改主要集中在模型的预训练和微调阶段,旨在不仅使模型能够处理更丰富的上下文信息,还提高了模型在不同NLP任务中的通用性和有效性,也就是说我们最终还是需要进行微调训练的,所以下面我们就要展示一些代码来看看如何进行这部分的微调训练。
利用LLM2Vec将Llama 3转化为文本嵌入模型首先我们安装依赖
pip install llm2vecpip install flash-attn --no-build-isolation
我们这里演示使用单卡的4090,对于现有模型,我们直接加载现有的模型:
import torchfrom llm2vec import LLM2Vecl2v = LLM2Vec.from_pretrained( "meta-llama/Meta-Llama-3-8B", device_map="cuda" if torch.cuda.is_available() else "cpu", torch_dtype=torch.bfloat16,)l2v.save("Llama-3-8B-Emb")
“torch_dtype=torch.bfloat16”是能够在24 GB GPU上运行转换所必需的配置。如果不设置它,模型将是float32参数的原始大小,内存是不够的。
这时,其实这个模型已经可以使用了。但是如果其插入到RAG中。它的性能是不如标准嵌入模型,因为他的运行方式还是因果推断,而不是我们的嵌入。
所以下一步,就需要用MNTP的目标来训练羊驼他。论文的作者还提供了一个脚本:
experiments/run_mntp.py
它目前支持Llama和Mistral架构的模型,所以我们直接可以拿来使用
git clone https://github.com/McGill-NLP/llm2vec.git
这个脚本需要一个参数,它是JSON格式的配置文件。他们在这里提出了几个例子:
train_configs / mntp
对于Llama 3 8b,配置可以是这样的:
JSON_CONFIG='''{ "model_name_or_path": "meta-llama/Meta-Llama-3-8B", "dataset_name": "wikitext", "dataset_config_name": "wikitext-103-raw-v1", "per_device_train_batch_size": 1, "per_device_eval_batch_size": 1, "gradient_accumulation_steps": 16, "do_train": true, "do_eval": true, "max_seq_length": 512, "mask_token_type": "blank", "data_collator_type": "all_mask", "mlm_probability": 0.8, "overwrite_output_dir": true, "output_dir": "Llama-3-8B-llm2vec-MNTP-Emb", "evaluation_strategy": "steps", "eval_steps": 100, "save_steps": 200, "stop_after_n_steps": 1000, "lora_r": 16, "gradient_checkpointing": true, "torch_dtype": "bfloat16", "attn_implementation": "flash_attention_2"}'''with open("mntp_config.json", 'w') as f: f.write(JSON_CONFIG)
该脚本使用bfloat16参数加载模型。将每个设备的批处理大小设置为1,这样可以适合24 GB的GPU。
然后可以开始MNTP训练:
python llm2vec/experiments/run_mntp.py mntp_config.json
使用24gb的4090,或者Google Colab的L4,这需要4天的时间。但是经过MNTP训练后,模型应该会产生更好的结果,特别是对于检索任务。
论文中提到的最后一步是SimCSE,但是作者还没有发布他们的代码,但提到他们会发布的。所以我们直接可以那这个模型来进行测试
使用Llama 3文本嵌入模型对于训练完成的模型,我们可以直接使用SentenceTransformer加载
from sentence_transformers import SentenceTransformermodel = SentenceTransformer("Llama-3-8B-llm2vec-Emb")
使用LlamaIndex的话可以直接设置
Settings.embed_model = HuggingFaceEmbedding(model_name="Llama-3-8B-llm2vec-Emb", device='cpu')
这里设置device= ' cpu '使用cpu加载,这会使RAG系统变慢。可以删除此参数以在GPU上运行它。但是模型是以全精度加载的,所以我们将其加载到CPU上进行测试。因为llm2vec是刚刚发布的,所以还没有任何的量化教程,希望后续会有发布,这样就可以在我们的GPU上完全的使用了。
总结通过LLM2Vec,我们可以使用LLM作为文本嵌入模型。但是简单地从llm中提取的嵌入模型往往表现不如常规嵌入模型。LLM2Vec的作者提出了新的训练目标MNTP和SimCSE来训练从llm中提取的嵌入模型。这种训练成本很高,但根据作者的说法,可以产生更好的嵌入模型。
论文地址:
https://avoid.overfit.cn/post/67a62b9532b247cc9db87663ce547ff2