我们在美团 APP 下单,假如没有立即支付,进入订单详情会显示倒计时,如果超过支付时间,订单就会被自动取消。
这篇文章,笔者想以架构师的视角,深入剖析如何设计订单超时自动取消的功能。
1 定时任务首先,我们非常自然的想到定时任务的方案。
方案流程:
每隔 30 秒查询数据库,取出最近的 N 条未支付的订单。遍历查询出来的订单列表,判断当前时间减去订单的创建时间是否超过了支付超时时间,如果超时则对该订单执行取消操作。这种方案会间隔对数据库造成一定的 IO 压力,但工程实现相对简单。
网上有很多的定时任务实现策略,我们可以简单划分为单机版和集群版。
![](https://javayong.cn/pics/schedule/danjiandjiqun.png?2)
笔者曾负责过彩票订单、专车订单等业务,在这些业务场景里,都没有使用单机版定时任务。
因为业务系统都是集群部署,假如使用单机版模式,可能出现多台不同机器实例同时执行任务的风险。
虽然我们可以通过加锁的方式适当规避,从架构设计的角度但总是不够优雅。
接下来,笔者会介绍亲身经历的三种集群定时任务。
01、 Quartz + JDBCJobStore
Quartz 是一款 Java 开源任务调度框架,它支持集群模式。
图中,Quartz 的集群模式需要在数据库中添加11张表,对业务系统有一定的侵入性。
笔者曾经服务的一家彩票公司,订单调度中心就是使用 Quartz 的集群模式,实现日均百万订单的调度处理。
需要特别注意的是:
基于底层数据库悲观锁的机制, Quartz 的集群模式性能并不高,假如执行频率高的任务数超过一定数量级,可能存在一定的问题。
02、 Elastic-Job
ElasticJob 定位为轻量级无中心化解决方案,使用 jar 的形式提供分布式任务的协调服务。
ElasticJob 从本质上来讲 ,底层任务调度还是通过 Quartz ,它的优势在于可以依赖 Zookeeper 这个大杀器 ,将任务通过负载均衡算法分配给应用内的 Quartz Scheduler 容器,
举例:应用A有五个任务需要执行,分别是 A,B,C,D,E。任务E需要分成四个子任务,应用部署在两台机器上。
图中,应用 A 在启动后, 5个任务通过 Zookeeper 协调后被分配到两台机器上,通过 Quartz Scheduler 分开执行不同的任务。
相比 Quartz 集群模式,ElasticJob 的可扩展性更高,同时性能也更好。
但是 ElasticJob 的控制台非常粗糙,主要原因还是基于它的实现机制 (Quartz + zookeeper),所以 ElasticJob 更多的还是定位于框架,而不是一个调度平台。
03、XXL-JOB
XXL-JOB 是一个使用最广泛的分布式任务调度平台。
业务系统和调度平台分开部署,我们在调度中心上配置应用以及其定时任务,当任务需要执行时,调度平台会触发业务系统的任务,业务系统执行完任务之后,反馈给调度平台任务执行的结果。
业务系统和调度平台都可以水平扩展实现高可用,同时在调度平台可以配置灵活的调度策略(比如重试机制等)。
笔者非常认可这种模式。很多公司比如神州专车、美团都有自己自研的任务调度平台。这种模式非常适合多团队协作,便于调度任务的统一管理。
2 延时消息延时消息是一种非常优雅的模式。订单服务生成订单后,发送一条延时消息到消息队列。消息队列在消息到达支付过期时间时,将消息投递给消费者,执行取消订单的逻辑。
延时消息有三种技术选型:
1、消息队列 RocketMQ
RocketMQ 4.X 版本默认支持 18 个 level 的延迟消息, 通过 broker 端的 messageDelayLevel 配置项确定的。
RocketMQ 5.X 版本支持任意时刻延迟消息,客户端在构造消息时提供了 3 个 API 来指定延迟时间或定时时间。
2、自研延迟服务
基于 RocketMQ 4 内置的延迟消息只能支持几个固定的延迟级别,快手、滴滴开发了单独的 Delay Server 来调度延迟消息。
上图这个结构没有直接将延迟消息发到 Delay Server,而是更换 Topic 以后存入 RocketMQ。这样的好处是可以复用现有的消息发送接口(以及上面的所有扩展能力)。对业务来说,只需要在构造消息的时候额外指定一个延迟时间字段即可,其它用法都不变。
自研单独的 Delay Server 不仅可以适配 RocketMQ 4.X , 也可以适配 Kafka ,说实话,这个是一个非常实用的方案。
3、Redis 延迟队列
Redis 延迟队列是一个轻量级的解决方案,开源成熟的实现是 Redission 。
图中,我们定义两个集合:
1、zset 集合
生产者将任务信息发送到 zset 集合,value 是任务编号,score 是任务执行时间戳。
2、list 集合
守护线程检测 zset 集合中到期的任务,若任务到期,将任务编号转移到 list 集合 , 消费者从 list 集合弹出任务,并执行任务逻辑。
笔者需要强调的是:
Redis 虽然可以实现延迟消息的功能,但 Redis 并不是真正意义上的消息队列,在使用过程中还是有小概率会丢失消息。
3 并发口诀:一锁二判三更新不管我们使用定时任务还是延迟消息时,不可避免的会遇到并发执行任务的情况 (比如重复消费、调度重试等)。
当我们执行任务时,我们可以按照一锁二判三更新这个口诀来处理。
锁定当前需要处理的订单。判断订单是否已经更新过对应状态了如果订单之前没有更新过状态了,可以更新并完成相关业务逻辑,否则本次不能更新,也不能完成业务逻辑。释放当前订单的锁。4 总结这篇文章,笔者总结了订单超时自动取消方案的两种流派:定时任务和延迟消息。
1、定时任务
每隔 30 秒查询数据库,取出最近的 N 条未支付的订单。遍历查询出来的订单列表,判断当前时间减去订单的创建时间是否超过了支付超时时间,如果超时则对该订单执行取消操作。定时任务实现策略,我们可以简单划分为单机版和集群版。
笔者并不认可单机版,背八股文当然可以,订单自动取消这个业务场景,生产环境还是要慎重。
集群版有三种方式:Quartz + JDBCJobStore、Elastic-Job 、XXL-JOB 。
每种方式各有优缺点,因为自研过任务调度系统的缘故,笔者更倾向于任务调度平台 XXL-JOB 这种方式。
2、延迟消息
延时消息是一种非常优雅的模式。订单服务生成订单后,发送一条延时消息到消息队列。消息队列在消息到达支付过期时间时,将消息投递给消费者,执行取消订单的逻辑。
本文介绍了三种方式:消息队列 RocketMQ、自研延迟服务、Redis 延迟队列。
假如技术团队基础架构能力很强,笔者推荐使用 RocketMQ 或者自研延迟服务。
假如技术团队仅仅想用轻量级的实现,可以选择 Redis 延迟队列。
不管是使用定时任务还是延迟消息,都需要考虑并发问题,请记住一个简单的口诀:一锁二判三更新。
最后,没有完美的技术,只有最合适的技术。
做技术选型时,一定要结合业务场景,研发效率,运维成本,技术储备等因素,做出合理的选择。
如果我的文章对你有所帮助,还请帮忙点赞、在看、转发一下,你的支持会激励我输出更高质量的文章,非常感谢!