注意力机制是许多最先进神经网络架构的基本组成部分,比如Transformer模型。注意力机制中的一个关键方面是掩码,它有
在处理诸如文本之类的序列时,排序信息显然是至关重要的。为了结合排序信息而不是将序列视为集合,对位置信息进行编码是至关重要
在这篇文章中,我们将探讨测试和评估异常检测器的问题(这是一个众所周知的难题),并提出了一种解决方案被称为“Doping”
训练人工神经网络最重要的挑战之一是灾难性遗忘。神经网络的灾难性遗忘(catastrophic forgetting)是指
在总结文章或回答给定段落的问题时,大语言模型可能会产生幻觉,并会根据给定的上下文回答不准确或未经证实的细节,这也被称为情
如果你尝试过像ChatGPT这样的LLM,就会知道它们几乎可以为任何语言或包生成代码。但是仅仅依靠LLM是有局限的。对于
时间序列分析中包含了许多复杂的数学公式,它们往往难以留存于记忆之中。为了更好地掌握这些内容,本文将整理并总结时间序列分析
Python中关于列表的一些很酷的技巧1、collections.dequedeque(双端队列)非常适合从列表的两端快
LLM擅长文本生成应用程序,如聊天和代码完成模型,能够高度理解和流畅。但是它们的大尺寸也给推理带来了挑战。有很多个框架和
PyTorch是一个流行的深度学习框架,一般情况下使用单个GPU进行计算时是十分方便的。但是当涉及到处理大规模数据和并行
本文总结了2024年6月后两周发表的一些最重要的大语言模型论文。这些论文涵盖了塑造下一代语言模型的各种主题,从模型优化和
该论文提出了一个新的框架,用于在强模型和弱模型之间进行查询路由选择。通过学习用户偏好数据,预测强模型获胜的概率,并根据成
在自然语言处理领域,人们经常需要比较字符串,这些字符串可能是单词、句子、段落甚至是整个文档。如何快速判断两个单词或句子是
Encoder-decoder 模型在序列到序列的自然语言处理任务(如语言翻译等)中提供了最先进的结果。多步时间序列预测
Kolmogorov Arnold Networks (KAN)最近作为MLP的替代而流行起来,KANs使用Kolmog
长上下文大型语言模型(LCLLMs)确实引起了一些关注。这类模型可能使某些任务的解决更加高效。例如理论上可以用来对整本书
与其他算法相比,高斯过程不那么流行,但是如果你只有少量的数据,那么可以首先高斯过程。在这篇文章中,我将详细介绍高斯过程。
当Transformer模型发布时,它彻底革新了机器翻译领域。虽然最初是为特定任务设计的,但这种革命性的架构显示出它可以
在本文中,我们将介绍使用私有数据优化检索增强生成(RAG)的四种策略,可以提升生成任务的质量和准确性。通过使用一些优化策
Theta方法整合了两个基本概念:分解时间序列和利用基本预测技术来估计未来的价值。每个数据科学爱好者都知道,时间序列是按
签名:提供专业的人工智能知识,包括CV NLP 数据挖掘等