猎鹿博弈又称猎鹿模型,源自启蒙思想家卢梭的著作《论人类不平等的起源和基础》中的一个故事:
古代的村庄有两个猎人。当地的猎物主要有两种:鹿和兔子。如果一个猎人单兵作战,一天最多只能打到4只兔子。只有两个一起去才能猎获一只鹿。从填饱肚子的角度来说,4只兔子能保证一个人4天不挨 饿,而一只鹿却能让两个人吃上10天。这样两个人的行为决策可以形成两个博弈结局:分别打兔子,每人得4;合作,每人得10。这样猎鹿博弈有两个纳什均衡点,那就是:要么分别打兔子,每人吃饱4天;要么合作,每人吃饱10天。
显然,两个人合作猎鹿的好处比各自打兔子的好处要大得多,但是要求两个猎人的能力和贡献相等。如果一个猎人的能力强、贡献大,他就会要求得到较大的一份,这可能会让另一个猎人觉得利益受损而不愿意合作。合则双赢的道理大家都懂,在实际中很难合作的原因就在于 此。合作要求博弈双方学会与对手共赢,充分照顾到合作者的利益。
什么是诺斯悖论?诺斯悖论是诺斯在1981年提出,国家具有双重目标,一方面通过向不同的势力集团提供不同的产权,获取租金的最大化;另一方面,国家还试图降低交易费用以推动社会产出的最大化,从而获取国家税收的增加。国家的这两个目标经常是冲突的。另外,由于存在着投票悖论、理性的无知,加之政治市场的竞争更不充分和交易的对象更难以考核等因素,政治市场的交易费用高昂。结果,政府作用的结果往往是经济增长的停滞。
什么是生日悖论?生日悖论(Birthday Paradox)是指,如果一个房间里有23个或23个以上的人,那么至少有两个人的生日相同的概率要大于50%。这就意味着在一个典型的标准小学班级(30人)中,存在两人生日相同的可能性更高。对于60或者更多的人,这种概率要大于99%。从引起逻辑矛盾的角度来说生日悖论并不是一种悖论,从这个数学事实与一般直觉相抵触的意义上,它才称得上是一个悖论。大多数人会认为,23人中有2人生日相同的概率应该远远小于50%。计算与此相关的概率被称为生日问题,在这个问题之后的数学理论已被用于设计著名的密码攻击方法:生日攻击。