医线心声|上篇:针对动脉粥样硬化中炎症的概述、策略和方向

小雁的记事本 2024-09-21 11:18:40

泰达国际心血管病医院 郑 刚

虽然降低低密度脂蛋白胆固醇(LDL-C)仍是继发性动脉粥样硬化性心血管疾病(ASCVD)治疗的主要手段,但预防和减轻全身炎症已成为复发性事件患者感兴趣的目标[1]。大量临床、观察和流行病学研究支持系统炎症加剧与ASCVD风险增加之间的关联。此外,探索使用抗炎药减轻全身炎症的具有里程碑意义的随机对照试验表明,继发性ASCVD事件显著减少[2]。尽管有这些证据,但关于炎症生物标志物在常规实践中的临床效用,预防指南和常用的ASCVD风险算法仍不清楚,尽管LDL-C水平得到了优化,但仍有很大一部分患者继续经历不良心脏事件[3]。炎症对动脉粥样硬化发展的显著影响意味着存在额外的机制和被忽视的残余炎症风险(RIR)。本文旨在解释动脉粥样硬化炎症的机制,确定潜在的生物标志物,讨论可用的治疗方案及其优缺点,强调未来的进展,并总结值得注意的临床研究。最后,提出了一种用于解决RIR的评估和管理算法。

1 动脉粥样硬化和炎症的机制

动脉粥样硬化病变,通常称为斑块,在动脉内膜内发展。炎症在动脉粥样硬化的各个阶段均起到关键作用,并涉及体内的各种免疫细胞[4-5]。巨噬细胞可分为M1(促炎)或M2(抗炎),保持两者之间的平衡对疾病进展或消退至关重要[6-7]。单核细胞趋化蛋白-1(MCP-1)、血管细胞粘附分子-1(VCAM-1)和细胞间粘附分子-1。T和B淋巴细胞也会导致动脉粥样硬化,淋巴细胞数量异常是一个独立风险因素。T细胞的不同亚群,如Th1、Th2和Th17,释放具有促炎或调节作用的特定细胞因子。CD8+细胞通过限制Th1细胞和巨噬细胞具有保护作用。B细胞通过白细胞介素(IL)-10的产生调节炎症,IL-10+B细胞减少与动脉粥样硬化患者的炎症有关[10-11]。中性粒细胞形成中性粒细胞外陷阱(NETs),并通过胆固醇晶体诱导的NETs释放导致炎症[12-14]。结节样受体家族含pyrin结构域3(NLRP3)炎性小体通过促进血管炎症和与脂质代谢相互作用,在动脉粥样硬化的发生和进展中起到至关重要的作用[15]。肥大细胞、自然杀伤细胞,树突状细胞也通过各种机制促进动脉粥样硬化,包括酶降解、泡沫细胞形成和细胞因子产生[16-18]。同样值得一提的是,炎症和血栓级联反应密切相关,炎症会触发并放大血栓反应,导致特定病理条件下血栓形成。

2 确定炎症风险

升高的生物标志物水平可确定哪些患者可从抗炎治疗中受益。此外,生物标志物可用于评估治疗反应。关于炎症风险的识别,一些生物标志物目前用于临床实践,而另一些则主要用于研究。

2.1 高敏C反应蛋白

C反应蛋白(CRP)可能是最有前景的生物标志物,拥有最多的研究数据。CRP是肝脏产生的一种急性期蛋白,可以在血液中检测到。CRP的合成是由IL-1、IL-6和肿瘤坏死因子(TNF)-α诱导。已经开发了高灵敏度CRP(hs-CRP)检测方法检测血浆CRP浓度的微小变化,hs-CRP水平升高与心血管事件的发生率较高有关。研究通常将hs-CRP≥2 mg/L作为心血管疾病风险增加的临界值[19]。当将hs-CRP添加到临床风险预测模型中时,几种心血管预测算法(如Reynolds风险评分)显示出有希望的结果[20]。非常高和非常低的CRP值被证明在临床上对风险预测有用[21]。

JUPITER试验在15年前表明,hs-CRP水平升高,而不是其他因素,是心血管事件发生率高的原因[22]。根据指导方针,hs-CRP目前不适用于决策,关于hs-CRP分布的信息有限。这种标记的缺点是缺乏具体性[23-25]。没有既定的临界值表明可能与感染而非动脉粥样硬化有关的值,但文献中建议的值比通常提到的2 mg/L高10倍以上。PROMINENT、REDUCE-IT和STRENGTH试验的综合分析检查了hs-CRP和LDL-C作为主要不良心血管事件、心血管死亡和全因死亡的预测因素[27]。该研究得出结论,对于服用他汀类药物的患者来说,通过hs-CRP评估的炎症可能比LDL-C水平更能预测未来心血管事件和死亡风险。

2.2 其他炎症标志物

纤维蛋白原影响凝血、血小板、血液健康和黏度,而升高的水平会阻碍循环和有助于动脉硬化。嘌呤分解产生的尿酸与高血压、心脏病和卒中有关,在痛风和肾病中很常见[28]。脂蛋白(a)[Lp(a)]是一种载脂蛋白(Apo)B-100,通过促进动脉粥样硬化、炎症和血栓形成独立增加ASCVD的风险。Lp(a)与纤溶酶原和组织纤溶酶原激活剂在结构上相似,干扰纤维蛋白溶解并促进凝血。此外,Lp(a)携带有助于动脉粥样硬化的胆固醇颗粒,并与促炎氧化磷脂结合,吸引炎性细胞并导致平滑肌细胞增殖[29]。Lp(a)在评估剩余风险方面具有重要意义,需要在本文范围之外进行专门综述。

有前景的新型生物标志物包括氧化LDL-C(与动脉粥样硬化有关)[30]、肝素结合细胞因子(midkine、与动脉粥样硬化相关)[31]、特异性microRNAs(与动脉粥样硬化和缺血性事件相关)[32]、五聚体如PTX3(与炎症和冠状动脉狭窄有关)[31]、肾上腺髓质素(与心血管过程有关)[33]、半胱氨酸蛋白酶抑制剂C(与亚临床动脉粥样硬化有关)[34]、脂蛋白相关磷脂酶A2(Lp-PLA2;指示血管内炎症)[35]和基质金属蛋白酶,特别是基质溶素-2(与动脉粥样硬化有联系)[36]。

3 促炎症风险增强因素

某些合并症可独立导致炎症和动脉粥样硬化性心脏病(ASCVD)风险增加, 2型糖尿病是一个公认的例子,涉及一种复杂的机制,包括致动脉粥样硬化的LDL-C、高血糖、氧化应激和炎症加剧[37]。高血压是另一个公认的心脏病风险因素,研究支持炎症标志物与高血压之间的独立关联,尽管速度关系很难确定[38]。系统性炎症性疾病,如系统性红斑狼疮和类风湿性关节炎,已被研究表明具有较高的心血管疾病和斑块破裂风险[39]。

吸烟已被广泛研究,已知会引起内皮功能障碍、巨噬细胞募集、细胞因子分泌、血栓形成、胰岛素抵抗、血脂异常、血管炎症、血管异常生长和血管生成。MESA研究表明,吸烟与心血管损伤的早期标志物有关,吸烟者往往具有高水平的hs-CRP[40]。高或急性饮酒可增强核因子κB(NF-κB)的活化和肿瘤坏死因子(TNF)-α的产生,并抑制IL-10水平[41]。久坐的生活方式可通过减少循环中分泌IL-10的调节性T细胞的数量和增加促炎单核细胞来增强炎症反应[42]。流行病学研究提供了将空气污染与ASCVD联系起来的证据。吸入的小颗粒已被证明会导致内皮功能障碍、血栓形成、血管收缩和斑块不稳定[43]。此外,种族、性别和民族等因素在风险增加中起重要作用[44]。通常,较不传统的危险因素更容易发生炎症性动脉粥样硬化。

4 动脉粥样硬化的抗炎干预

治疗动脉粥样硬化的传统方法侧重于控制血脂异常。这通常是通过改变生活方式和降脂药物实现。然而,即使血脂异常得到很好的控制,也需要解决其他风险因素。动脉粥样硬化的几个风险因素不可改变,如性别、种族、高龄或家族性早发心血管疾病史,而有些风险因素可修改,如糖尿病、高血压和吸烟。尽管有最佳的治疗方法来解决可改变的风险因素,但由于持续的炎症,许多患者的心脏事件风险仍增加。这被称为残余风险(RIR),它可能是一个药理学靶点[45-47]。

4.1 生活方式

调整生活方式管理——注重饮食、戒烟和运动——是预防ASCVD的关键。推荐的饮食包括尽量减少饱和脂肪、糖、酒精和钠的摄入,提倡摄入多不饱和脂肪、钾、维生素和纤维含量高的饮食。单靠减肥可能无法显著减少动脉粥样硬化,因此探索富含抗氧化剂的食物是值得的。虽然饮食方案对降低LDL-C的影响有限,但阻止高血压的饮食方法(DASH)和地中海饮食具有抗炎作用[48-49]。α-硫辛酸、花生四烯酸[50]、消瘦素(resolvin)[51]和长链n-3多不饱和脂肪酸等特定元素可减轻炎症[52]。体育活动还可减少炎症,并对动脉粥样硬化和心脏健康产生积极影响[53]。戒烟是预防ASCVD的一种行之有效的生活方式改变[54]。

4.2 降脂药物

他汀类 也被称为3-羟基-3-甲基戊二酰辅酶A(HMG-CoA)还原酶抑制剂,长期以来一直被用作治疗动脉粥样硬化[55]。这类药物的机制是抑制HMG-CoA还原酶,阻断细胞内甲羟戊酸代谢途径,减少细胞内胆固醇合成。这导致细胞膜表面LDL-C受体的数量和活性增加,从而清除血清胆固醇。他汀类药物主要用于治疗动脉粥样硬化,因为它们具有降低胆固醇的作用,他汀不仅降低了总胆固醇(TC)和LDL水平,还降低了甘油三酯(TG)水平并提高了高密度脂蛋白(HDL)水平。此外,他汀类药物具有抗炎特性,表现为CRP、趋化因子、细胞因子和粘附分子的释放减少以及T细胞活性的调节。他汀类药物通过降低粘附分子ICAM-1、淋巴细胞功能相关抗原-1和单核细胞趋化蛋白-1的表达来抑制白细胞的迁移;它们还抑制NF-κB、TNF-α和IL-1β,从而减少动脉粥样硬化斑块中炎性细胞的数量[56]。

在讨论RIR时,他汀类药物治疗与hs-CRP之间的关系很重要。在PROVE-IT TIMI 22研究中,hs-CRP水平<2 mg/L的受试者心血管事件较少,与LDL-C降低无关[57]。辛伐他汀和依折麦布的组合在IMPROVE-IT研究中产生了类似结果[58]。在JUPITER研究中,瑞舒伐他汀降低hs-CRP的幅度与心血管风险的降低成正比[22]。他汀类药物可按强度和剂量进行分类[59]。Zhang等[60]发表了一项荟萃分析,检查了不同类型和剂量他汀类药物的CRP水平,并表明辛伐他汀40 mg/d可能是最有效的治疗方法;阿托伐他汀80 mg/d显示出最佳的长期疗效。PRINCE试验表明,普伐他汀40 mg/d显著降低血浆CRP水平,与LDL-C水平的任何变化无关,对没有心血管疾病的中等风险参与者的HOPE-3研究支持瑞舒伐他汀的hs-CRP降低作用,不考虑基线下的CRP和脂质水平[56,61]。

依折麦布 通过选择性阻断空肠刷状边缘的尼曼-匹克C1样1(NPC1L1)蛋白,影响肠腔绒膜进入肠细胞的摄取,从而抑制肠道胆固醇吸收。依折麦布可能降低巨噬细胞含量和单核细胞趋化蛋白-1表达[62]。Morrone等[63]报告称,与他汀类药物单一治疗相比,依折麦布和他汀类药物联合治疗的hs-CRP降低水平更高。

原蛋白转化酶枯草杆菌蛋白酶/KEXIN 9型(PCSK9)抑制剂 PCSK9与LDL受体结合,并靶向它们进行溶酶体降解。PCSK9抑制剂(PCSK9-i)可阻止这一过程,美国食品和药物管理局(FDA)批准的前两种PCSK9-i是阿利西尤单抗(alirocumab)和依洛尤单抗(evolocumab)(均为单克隆抗体)。这些疗法建议用于尽管接受他汀类药物治疗但LDL-C水平较高的患者,以及治疗因不良反应而无法耐受他汀类药物的患者。阻断PCSK9合成的一种相对较新的方法包括英克司兰(inclisiran),一种特异性靶向并诱导PCSK9信使RNA(mRNA)降解的双链小干扰RNA。PCSK9-i在临床试验中显示心血管事件显著减少[64]。

FOURIER试验的一项分析表明,依洛尤单抗降低LDL-C可减少所有hs-CRP层的心血管事件,基线hs-CRP水平较高的患者绝对风险降低幅度更大[65]。然而,在一项针对稳定门诊人群的SPIRE试验的事后分析中,他汀类药物治疗和PCSK9-i治疗的患者仍存在残余炎症风险的证据[66]。动物模型表明,PCSK9与抵抗素(resistin、一种脂肪细胞特异性激素,负责管理促炎刺激和NF-κB的核转位)的结构域具有结构同源性,这可能会增加抗炎特性[67]。Rosenson和Goonewardena通过分析免疫细胞和检查特定变化揭示了这组药物的免疫调节特性[68]。PCSK9-i已被证明可降低单核细胞内脂质水平,改善单核细胞表型,减少单核细胞迁移[69]。这与没有显示炎症标志物变化的临床试验相矛盾,表明PCSK9-i减少ASCVD事件完全是因为LDL-C降低。另一项值得强调的重要研究是PACMAN-AMI试验,该试验表明,在急性心肌梗死(AMI)患者中,与安慰剂组相比,在52周后,皮下每两周注射一次阿利西尤单抗,并结合高强度他汀类药物治疗,导致非梗死相关动脉的冠状动脉斑块消退明显更大[70]。

其他降脂疗法 与他汀类药物类似,贝培多酸(Bempedoic acid)可降低LDL-C和hs-CRP,可能在不替代他汀类药物的情况下解决炎症和胆固醇风险[71]。洛米他匹德(Lomitapide)和米波森(mipomersen)对家族性高胆固醇血症具有潜在的抗炎作用[72-73]。二十碳五烯酸乙酯(Icosapent Ethyl)用于治疗严重的高甘油三酯血症和ASCVD,可能通过抑制IL-1β和IL-6具有抗炎作用[74]。HDL可能具有抗炎特性,逆转LDL-C的作用,高hs-CRP水平与HDL功能障碍有关[75]。

小结

动脉粥样硬化是一种慢性疾病,其特征是血管内壁斑块的积聚,是心血管疾病的主要潜在原因。动脉粥样硬化的发展与胆固醇和炎症的积累有关。尽管存在降低LDL-C水平的有效疗法,但一些患者仍会因持续炎症而发生心血管事件,称为RIR。研究人员进行了实验室和动物研究,以研究与动脉粥样硬化相关的炎症级联反应的测量和靶向,并取得了有希望的结果。除指导方针指导的生活方式改变和以降低LDL-C水平为重点的最佳药物治疗外,针对炎症的药物干预可能为预防未来的心脏事件提供进一步帮助。

专家简介

郑刚 教授

现任泰达国际心血管病医院特聘专家,济兴医院副院长

中国高血压联盟理事,中国心力衰竭学会委员,中国老年医学会高血压分会天津工作组副组长,中国医疗保健国际交流促进会高血压分会委员

天津医学会心血管病专业委员会委员,天津医学会老年病专业委员会常委,天津市医师协会高血压专业委员会常委,天津市医师协会老年病专业委员会委员,天津市医师协会心力衰竭专业委员,天津市医师协会心血管内科医师分会双心专业委员会委员,天津市心脏学会理事,天津市心律学会第一届委员会委员,天津市房颤中心联盟常委,天津市医药学专家协会第一届心血管专业委员会委员,天津市药理学会临床心血管药理专业委员会常委,天津市中西医结合学会心血管疾病专业委员会常委

《中华临床医师杂志(电子版)》特邀审稿专家,《中华诊断学电子杂志》《心血管外科杂志(电子版)》审稿专家,《华夏医学》副主编,《中国心血管杂志》常务编委,《中国心血管病研究》杂志第四届编委,《中华老年心脑血管病杂志》《世界临床药物》《医学综述》《中国医药导报》《中国现代医生》编委

本人在专业期刊和心血管网发表文章979篇,其中第一作者790篇,参加著书11部。获天津市2005年度“五一劳动奖章和奖状”和“天津市卫生行业第二届人民满意的好医生”称号

参考文献

1. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis.Circulation. 2002;105:1135-43.

2. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH,Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP,Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T,Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H,Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ; CANTOS TrialGroup. Antiinflammatory Therapy with Canakinumab for AtheroscleroticDisease. N Engl J Med. 2017;377:1119-31.

3. Miedema MD, Garberich RF, Schnaidt LJ, Peterson E, Strauss C, Sharkey S,Knickelbine T, Newell MC, Henry TD. Statin Eligibility and OutpatientCare Prior to ST-Segment Elevation Myocardial Infarction. J Am HeartAssoc. 2017;6:e005333.

4. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS,Mehran R, McPherson J, Farhat N, Marso SP, Parise H, Templin B,White R, Zhang Z, Serruys PW; PROSPECT Investigators. A prospectivenatural-history study of coronary atherosclerosis. N Engl J Med.

2011;364:226-35.

5. Erlinge D, Maehara A, Ben-Yehuda O, Botker HE, Maeng M, Kjoller-Hansen L, Engstrom T, Matsumura M, Crowley A, Dressler O, Mintz GS,Fröbert O, Persson J, Wiseth R, Larsen AI, Okkels Jensen L, Nordrehaug JE,Bleie O, Omerovic E, Held C, James SK, Ali ZA, Muller JE, Stone GW;PROSPECT II Investigators. Identification of vulnerable plaques andpatients by intracoronary near-infrared spectroscopy and ultrasound

(PROSPECT II): a prospective natural history study. Lancet.2021;397:985-95.

6. Barrett TJ. Macrophages in Atherosclerosis Regression. ArteriosclerThromb Vasc Biol. 2020;40:20-33.

7. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis:a dynamic balance. Nat Rev Immunol. 2013;13:709-21.

8. Aukrust P, Halvorsen B, Yndestad A, Ueland T, Oie E, Otterdal K,Gullestad L, Damas JK. Chemokines and cardiovascular risk. Arterioscler

Thromb Vasc Biol. 2008;28:1909-19.

9. Simon TG, Trejo MEP, McClelland R, Bradley R, Blaha MJ, Zeb I,Corey KE, Budoff MJ, Chung RT. Circulating Interleukin-6 is a biomarker

for coronary atherosclerosis in nonalcoholic fatty liver disease: Resultsfrom the Multi-Ethnic Study of Atherosclerosis. Int J Cardiol.

2018;259:198-204.

10. Grivel JC, Ivanova O, Pinegina N, Blank PS, Shpektor A, Margolis LB,Vasilieva E. Activation of T lymphocytes in atherosclerotic plaques.

Arterioscler Thromb Vasc Biol. 2011;31:2929-37.

11. Sage AP, Tsiantoulas D, Binder CJ, Mallat Z. The role of B cells in atherosclerosis.Nat Rev Cardiol. 2019;16:180-96.

12. Döring Y, Drechsler M, Soehnlein O, Weber C. Neutrophils in atherosclerosis:from mice to man. Arterioscler Thromb Vasc Biol. 2015;35:288-95.

13. Silvestre-Roig C, Braster Q, Ortega-Gomez A, Soehnlein O. Neutrophils asregulators of cardiovascular inflammation. Nat Rev Cardiol.

2020;17:327-40.

14. Soehnlein O. Multiple roles for neutrophils in atherosclerosis. Circ Res.2012;110:875-888.

15. Grebe A, Hoss F, Latz E. NLRP3 Inflammasome and the IL-1 Pathway inAtherosclerosis. Circ Res. 2018;122:1722-40.

16. Bot I, Shi GP, Kovanen PT. Mast cells as effectors in atherosclerosis.Arterioscler Thromb Vasc Biol. 2015;35:265-71.

17. Kovanen PT, Bot I. Mast cells in atherosclerotic cardiovascular disease -Activators and actions. Eur J Pharmacol. 2017;816:37-46.

18. Selathurai A, Deswaerte V, Kanellakis P, Tipping P, Toh BH, Bobik A,Kyaw T. Natural killer (NK) cells augment atherosclerosis by cytotoxicdependentmechanisms. Cardiovasc Res. 2014;102:128-37.

19. Carrero JJ, Andersson Franko M, Obergfell A, Gabrielsen A, Jernberg T.hsCRP Level and the Risk of Death or Recurrent Cardiovascular Events inPatients With Myocardial Infarction: a Healthcare-Based Study. J AmHeart Assoc. 2019;8:e012638.

20. Ridker PM, Buring JE, Rifai N, Cook NR. Development and validation ofimproved algorithms for the assessment of global cardiovascular risk inwomen: the Reynolds Risk Score. JAMA. 2007;297:611-9.

21. Ridker PM, Cook N. Clinical usefulness of very high and very low levels ofC-reactive protein across the full range of Framingham Risk Scores.Circulation. 2004;109:1955-9.

22. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ,Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG, Nordestgaard BG,Shepherd J, Willerson JT, Glynn RJ; JUPITER Study Group. Rosuvastatinto prevent vascular events in men and women with elevated C-reactive protein.N Engl J Med. 2008;359:2195-207.

23. Jezovnik MK, Poredos P. Inflammation and atherosclerosis: Clinical utilityof the C-reactive protein. ESC E-Journal of Cardiology Practice.

2007;5:15. ttps://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-5/Inflammation-and-atherosclerosis-Clinical-utility-of-the-

C-reactive-protein (Last accessed 30 March 2023).

24. Aday AW, Ridker PM. Targeting Residual Inflammatory Risk: A ShiftingParadigm for Atherosclerotic Disease. Front Cardiovasc Med. 2019;6:16.

25. Quispe R, Michos ED, Martin SS, Puri R, Toth PP, Al Suwaidi J, Banach M,Virani SS, Blumenthal RS, Jones SR, Elshazly MB. High-SensitivityC-Reactive Protein Discordance With Atherogenic Lipid Measures andIncidence of Atherosclerotic Cardiovascular Disease in Primary Prevention:The ARIC Study. J Am Heart Assoc. 2020;9:e013600.

26. Pereira J, Ribeiro A, Ferreira-Coimbra J, Barroso I, Guimaraes JT,Bettencourt P, Lourenço P. Is there a C-reactive protein value beyond which

one should consider infection as the cause of acute heart failure? BMCCardiovasc Disord. 2018;18:40.

27. Ridker PM, Bhatt DL, Pradhan AD, Glynn RJ, MacFadyen JG,Nissen SE; PROMINENT, REDUCE-IT, and STRENGTH Investigators.

Inflammation and cholesterol as predictors of cardiovascular events amongpatients receiving statin therapy: a collaborative analysis of three randomizedtrials. Lancet. 2023;401:1293-301.

28. Kobo O, Roguin A, Zukermann R, Kerner A, Marcusohn E. Gout IsAssociated With Worse Post-PCI Long-Term Outcomes. Cardiovasc RevascMed. 2022;41:166-9.

29. Di Fusco SA, Arca M, Scicchitano P, Alonzo A, Perone F, Gulizia MM,Gabrielli D, Oliva F, Imperoli G, Colivicchi F. Lipoprotein(a): a risk factorfor atherosclerosis and an emerging therapeutic target. Heart.2022;109:18-25.

30. Pirinccioglu AG, Gökalp D, Pirinccioglu M, Kizil G, Kizil M.Malondialdehyde (MDA) and protein carbonyl (PCO) levels as biomarkers

of oxidative stress in subjects with familial hypercholesterolemia. ClinBiochem. 2010;43:1220-4.

31. Adam CA, Șalaru DL, Prisacariu C, Marcu DTM, Sascău RA, Stătescu C.Novel Biomarkers of Atherosclerotic Vascular Disease-Latest Insights inthe Research Field. Int J Mol Sci. 2022;23:4998.

32. Ghafouri-Fard S, Gholipour M, Taheri M. Role of MicroRNAs in thePathogenesis of Coronary Artery Disease. Front Cardiovasc Med.

2021;8:632392.

33. Gottsäter M, Ford LB, Ostling G, Persson M, Nilsson PM, Melander O.Adrenomedullin is a marker of carotid plaques and intima-media thicknessas well as brachial pulse pressure. J Hypertens. 2013;31:1959-65.

34. West M, Kirby A, Stewart RA, Blankenberg S, Sullivan D, White HD,Hunt D, Marschner I, Janus E, Kritharides L, Watts GF, Simes J,

Tonkin AM; LIPID Study Group *. Circulating Cystatin C Is an IndependentRisk Marker for Cardiovascular Outcomes, Development of Renal

Impairment, and Long-Term Mortality in Patients With Stable CoronaryHeart Disease: The LIPID Study. J Am Heart Assoc. 2022;11:e020745.

35. Gonçalves I, Edsfeldt A, Ko NY, Grufman H, Berg K, Björkbacka H,Nitulescu M, Persson A, Nilsson M, Prehn C, Adamski J, Nilsson J.

Evidence supporting a key role of Lp-PLA2-generated lysophosphatidylcholinein human atherosclerotic plaque inflammation. Arterioscler

Thromb Vasc Biol. 2012;32:1505-12.

36. Olejarz W, Łacheta D, Kubiak-Tomaszewska G. Matrix Metalloproteinasesas Biomarkers of Atherosclerotic Plaque Instability. Int J Mol Sci.2020;21:3946.

37. Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN.The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid andGlucose Metabolism and Chronic Inflammation. Int J Mol Sci.2020;21:1835.

38. Solak Y, Afsar B, Vaziri ND, Aslan G, Yalcin CE, Covic A, Kanbay M.Hypertension as an autoimmune and inflammatory disease. Hypertens Res.2016;39:567-73.

39. Frostegard J. Atherosclerosis in patients with autoimmune disorders.Arterioscler Thromb Vasc Biol. 2005;25:1776-85.

40. Blaha MJ, DeFilippis AP. Multi-Ethnic Study of Atherosclerosis (MESA):JACC Focus Seminar 5/8. J Am Coll Cardiol. 2021;77:3195-216.

41. Nowak AJ, Relja B. The Impact of Acute or Chronic Alcohol Intake on theNF-κB Signaling Pathway in Alcohol-Related Liver Disease. Int J Mol Sci.2020;21:9407.

42. Nimmo MA, Leggate M, Viana JL, King JA. The effect of physical activityon mediators of inflammation. Diabetes Obes Metab. 2013;15 Suppl3:51-60.

43. Bevan GH, Al-Kindi SG, Brook RD, Münzel T, Rajagopalan S. AmbientAir Pollution and Atherosclerosis: Insights Into Dose, Time, and

Mechanisms. Arterioscler Thromb Vasc Biol. 2021;41:628-37.

44. McClelland RL, Chung H, Detrano R, Post W, Kronmal RA. Distributionof coronary artery calcium by race, gender, and age: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation. 2006;113:30-7.

45. Ridker PM. Residual inflammatory risk: addressing the obverse side of theatherosclerosis prevention coin. Eur Heart J. 2016;37:1720-2.

46. Ridker PM. How Common Is Residual Inflammatory Risk? Circ Res.2017;120:617-9.

47. Guedeney P, Claessen BE, Kalkman DN, Aquino M, Sorrentino S,Giustino G, Farhan S, Vogel B, Sartori S, Montalescot G, Sweeny J,Kovacic JC, Krishnan P, Barman N, Dangas G, Kini A, Baber U, Sharma S,Mehran R. Residual Inflammatory Risk in Patients With Low LDLCholesterol Levels Undergoing Percutaneous Coronary Intervention. J AmColl Cardiol. 2019;73:2401-9.

48. Tsigalou C, Konstantinidis T, Paraschaki A, Stavropoulou E, Voidarou C,Bezirtzoglou E. Mediterranean Diet as a Tool to Combat Inflammation andChronic Diseases. An Overview. Biomedicines. 2020;8:201.

49. Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M,Benetos A, Biffi A, Boavida JM, Capodanno D, Cosyns B, Crawford C,Davos CH, Desormais I, Di Angelantonio E, Franco OH, Halvorsen S,Hobbs FDR, Hollander M, Jankowska EA, Michal M, Sacco S, Sattar N,Tokgozoglu L, Tonstad S, Tsioufis KP, van Dis I, van Gelder IC, Wanner C,Williams B; ESC National Cardiac Societies; ESC Scientific DocumentGroup. 2021 ESC Guidelines on cardiovascular disease prevention in clinicalpractice. Eur Heart J. 2021;42:3227-337.

50. Zhou Y, Khan H, Xiao J, Cheang WS. Effects of Arachidonic AcidMetabolites on Cardiovascular Health and Disease. Int J Mol Sci.

2021;22:12029.

51. Tułowiecka N, Kotlęga D, Prowans P, Szczuko M. The Role of Resolvins:EPA and DHA Derivatives Can Be Useful in the Prevention and Treatmentof Ischemic Stroke. Int J Mol Sci. 2020;21:7628.

52. Dessi M, Noce A, Bertucci P, Manca di Villahermosa S, Zenobi R,Castagnola V, Addessi E, Di Daniele N. Atherosclerosis, dyslipidemia, and

inflammation: the significant role of polyunsaturated Fatty acids. ISRNInflamm. 2013;2013:191823.

53. Chacon D, Fiani B. A Review of Mechanisms on the Beneficial Effect ofExercise on Atherosclerosis. Cureus. 2020;12:e11641.

54. Gambardella J, Sardu C, Sacra C, Del Giudice C, Santulli G. Quit smokingto outsmart atherogenesis: Molecular mechanisms underlying clinical evidence.Atherosclerosis. 2017;257:242-5.

55. Randomised trial of cholesterol lowering in 4444 patients with coronaryheart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet.1994;344:1383-9.

56. Proute MC, Kothur N, Georgiou P, Serhiyenia T, Shi W, Kerolos ME,Pradeep R, Akram A, Khan S. The Effect of Statin Therapy on InflammatoryBiomarkers: A Systematic Review. Cureus. 2021;13:e18273.

57. Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R,Joyal SV, Hill KA, Pfeffer MA, Skene AM; Pravastatin or AtorvastatinEvaluation and Infection Therapy-Thrombolysis in Myocardial Infarction22 Investigators. Intensive versus moderate lipid lowering with statins afteracute coronary syndromes. N Engl J Med. 2004;350:1495-504.

58. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P,Darius H, Lewis BS, Ophuis TO, Jukema JW, De Ferrari GM, Ruzyllo W,De Lucca P, Im K, Bohula EA, Reist C, Wiviott SD, Tershakovec AM,Musliner TA, Braunwald E, Califf RM; IMPROVE-IT Investigators.Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. NEngl J Med. 2015;372:2387-97.

59. Chou R, Cantor A, Dana T, Wagner J, Ahmed A, Fu R, Ferencik M. StatinUse for the Primary Prevention of Cardiovascular Disease in Adults: ASystematic Review for the U.S. Preventive Services Task Force [Internet].Rockville (MD): Agency for Healthcare Research and Quality (US); 2022.(Evidence Synthesis, No. 219.) Available from: https://www.ncbi.nlm.nih.gov/books/NBK583661/. (Last accessed 9 December 2023).

60. Zhang J, Wang X, Tian W, Wang T, Jia J, Lai R, Wang T, Zhang Z, Song L,Ju J, Xu H. The effect of various types and doses of statins on C-reactiveprotein levels in patients with dyslipidemia or coronary heart disease:A systematic review and network meta-analysis. Front Cardiovasc Med.2022;9:936817.

61. Yusuf S, Bosch J, Dagenais G, Zhu J, Xavier D, Liu L, Pais P, López-Jaramillo P, Leiter LA, Dans A, Avezum A, Piegas LS, Parkhomenko A,

Keltai K, Keltai M, Sliwa K, Peters RJ, Held C, Chazova I, Yusoff K,Lewis BS, Jansky P, Khunti K, Toff WD, Reid CM, Varigos J, Sanchez-Vallejo G, McKelvie R, Pogue J, Jung H, Gao P, Diaz R, Lonn E; HOPE-3Investigators. Cholesterol Lowering in Intermediate-Risk Persons withoutCardiovascular Disease. N Engl J Med. 2016;374:2021-31.

62. Gómez-Garre D, Munoz-Pacheco P, González-Rubio ML, Aragoncillo P,Granados R, Fernández-Cruz A. Ezetimibe reduces plaque inflammation ina rabbit model of atherosclerosis and inhibits monocyte migration in additionto its lipid-lowering effect. Br J Pharmacol. 2009;156:1218-27.

63. Morrone D, Weintraub WS, Toth PP, Hanson ME, Lowe RS, Lin J,Shah AK, Tershakovec AM. Lipid-altering efficacy of ezetimibe plus statin

and statin monotherapy and identification of factors associated with treatmentresponse: a pooled analysis of over 21,000 subjects from 27 clinical

trials. Atherosclerosis. 2012;223:251-61.

64. Pokhrel B, Yuet WC, Levine SN. PCSK9 Inhibitors. [Updated 2022 May13]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing;2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK448100/. (Last accessed 21 Nov 2023).

65. Bohula EA, Giugliano RP, Leiter LA, Verma S, Park JG, Sever PS, LiraPineda A, Honarpour N, Wang H, Murphy SA, Keech A, Pedersen TR,Sabatine MS. Inflammatory and Cholesterol Risk in the FOURIER Trial.Circulation. 2018;138:131-40.

66. Pradhan AD, Aday AW, Rose LM, Ridker PM. Residual Inflammatory Riskon Treatment With PCSK9 Inhibition and Statin Therapy. Circulation.2018;138:141-9.

67. Punch E, Klein J, Diaba-Nuhoho P, Morawietz H, Garelnabi M. Effects ofPCSK9 Targeting: Alleviating Oxidation, Inflammation, and

Atherosclerosis. J Am Heart Assoc. 2022;11:e023328.

68. Rosenson RS, Goonewardena S. Inhibition of PCSK9 With EvolocumabModulates Immune-Cell Activation in High-Risk ASCVD Patients – theMETCHNIKOFF Clinical Trial. J Am Coll Cardiol. 2023;81:1632.

69. Wu H, Ballantyne CM. Dyslipidaemia: PCSK9 inhibitors and foamy monocytesin familial hypercholesterolaemia. Nat Rev Cardiol. 2017;14:385-6.

70. Räber L, Ueki Y, Otsuka T, Losdat S, Häner JD, Lonborg J, Fahrni G,Iglesias JF, van Geuns RJ, Ondracek AS, Radu Juul Jensen MD, Zanchin C,Stortecky S, Spirk D, Siontis GCM, Saleh L, Matter CM, Daemen J,Mach F, Heg D, Windecker S, Engstrom T, Lang IM, Koskinas KC;PACMAN-AMI collaborators. Effect of Alirocumab Added to High-Intensity Statin Therapy on Coronary Atherosclerosis in Patients WithAcute Myocardial Infarction: The PACMAN-AMI Randomized ClinicalTrial. JAMA. 2022;327:1771-81.

71. Nissen SE, Lincoff AM, Brennan D, Ray KK, Mason D, Kastelein JJP,Thompson PD, Libby P, Cho L, Plutzky J, Bays HE, Moriarty PM,

Menon V, Grobbee DE, Louie MJ, Chen CF, Li N, Bloedon L, Robinson P,Horner M, Sasiela WJ, McCluskey J, Davey D, Fajardo-Campos P,

Petrovic P, Fedacko J, Zmuda W, Lukyanov Y, Nicholls SJ; CLEAROutcomes Investigators. Bempedoic Acid and Cardiovascular Outcomes in

Statin-Intolerant Patients. N Engl J Med. 2023;388:1353-64.

72. Rayan RA, Sharma S. Lomitapide. [Updated 2022 Jul 18]. In: StatPearls[Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Availablefrom: https://www.ncbi.nlm.nih.gov/books/NBK560849/. (Last accessed21 Nov 2023).

73. Waldmann E, Vogt A, Crispin A, Altenhofer J, Riks I, Parhofer KG. Effectof mipomersen on LDL-cholesterol in patients with severe LDLhypercholesterolaemiaand atherosclerosis treated by lipoprotein apheresis(The MICA-Study). Atherosclerosis. 2017;259:20-5.

74. Bhatt DL, Hull MA, Song M, Van Hulle C, Carlsson C, Chapman MJ,Toth PP. Beyond cardiovascular medicine: potential future uses of icosapentethyl. Eur Heart J Suppl. 2020;22:J54-64.

75. Tang X, Mao L, Chen J, Zhang T, Weng S, Guo X, Kuang J, Yu B, Peng D.High-sensitivity CRP may be a marker of HDL dysfunction and remodelingin patients with acute coronary syndrome. Sci Rep. 2021;11:11444.

0 阅读:0

小雁的记事本

简介:感谢大家的关注