PiSSA:将模型原始权重进行奇异值分解的一种新的微调方法

deephub 2024-04-12 10:12:39

我们开始看4月的新论文了,这是来自北京大学人工智能研究所、北京大学智能科学与技术学院的研究人员发布的主奇异值和奇异向量适应性调整(PiSSA)方法。

PiSSA和LoRA一样,都是基于这样的前提:对模型参数的改变会形成一个低秩矩阵。

这种方法通过将模型中的矩阵表示为两个可训练矩阵的乘积,辅以一个用于错误校正的残差矩阵,优化了紧凑的参数空间。利用奇异值分解(SVD),PiSSA初始化主奇异值和奇异向量以训练这两个矩阵,同时在微调过程中保持残差矩阵静态。

PiSSA与LoRA的架构相一致,继承了诸如可训练参数减少、轻松部署等好处。但是与LoRA不同,使用PiSSA进行微调的过程与完整模型过程相似,会避免无效的梯度步骤和次优结果。

在LLaMA 2-7B、Mistral-7B-v0.1和Gemma-7B模型的多个任务的比较实验中,PiSSA凭借卓越的表现脱颖而出。以主奇异值和向量初始化的微调适配器产生了更好的结果。

PiSSA展示了加速的收敛速度、与训练数据的稳健对齐,并在类似的可训练参数配置下胜过LoRA。

利用快速SVD技术有助于PiSSA在初始化速度和性能之间取得平衡。

论文中将奇异值分解应用于预训练模型的权重矩阵,以提取主要成分。然后使用这些成分来初始化一个名为PiSSA的适配器。微调PiSSA在开始阶段可以密切复制完整模型微调的效果,同时保持良好的参数效率。通过大量实验,展示了PiSSA的微调性能显著超过了LoRA。

论文地址:

https://avoid.overfit.cn/post/33c2c6c983364b629c1e01479836bacc

0 阅读:0

deephub

简介:提供专业的人工智能知识,包括CV NLP 数据挖掘等