PNAS丨基因突变致盲?探究ABCA4的表达与Stargardt黄斑变性

世界生命科学大会 2024-09-10 21:49:32

STGD1型Stargardt病是一种遗传性视网膜退行性疾病,与突变的ATP结合盒,亚科A,成员4(ABCA4)基因有关。STGD1是幼年黄斑变性最常见的形式,发病于儿童时期至成年早期或中期,可导致进行性、不可逆的视力障碍和失明,然而目前尚无有效的治疗方法。

2018年Tamara L. Lenisfa在线发表“Expression of ABCA4 in the retinal pigment epithelium and its implications for Stargardt macular deggeneration”的研究论文,该论文已被在国际知名医学期刊PNAS(Q1,IF=10.2)接收并在线发表。

研究背景:

隐性Stargardt病(STGD1)是一种由Abca4基因突变引起的遗传性致盲疾病,其临床特征为发病早,RPE中荧光脂褐素堆积,光感受器变性甚至致盲。ABCA4是光感受器外段(OS)上的一种翻转酶,它通过OS盘膜转运与磷脂酰乙醇胺结合的视黄醛。ABCA4 - / -小鼠和STGD1患者中ABCA4的缺失导致视网膜色素上皮(RPE)中脂褐素的积聚和光感受器的退化,导致失明。目前尚无针对STGD1的有效治疗方法,本研究提出假设ABCA4通常存在于RPE细胞的内溶酶体膜中。

研究结果:

图1. ABCA4在RPE中内源性表达。

注:ABCA4以前被称为光感受器辐射蛋白RmP或ABCR,目前已知,人类的ABCA4基因有50个外显子,2273个氨基酸蛋白,分子量为256kDa,ABCA4基因转录一个大的特定的视网膜蛋白,即ABCA4蛋白,该蛋白几乎只存在于视网膜的视杆细胞的外节盘缘上,具有两个串联的区域,即氮端和碳端,每个区域各包含跨膜区(transmembrane domain,TMD)、糖基化胞外域(exocytoplasmic domain,EDC)和核苷酸结合结构域(nucleotide binding domain,NBD)各一个。

图2. ABCA4与内溶酶体标记共定位。

(A) 2岁野生型balb /c(上)和白化Abca4−/−(下)小鼠视网膜/RPE切片的代表性共聚焦图像与Abca4(红色)和LAMP1(绿色)抗体反应。注意,ABCA4和LAMP1在野生型RPE中共定位,但在OS中没有。在ABCA4−/−RPE细胞中也存在LAMP1,但不存在ABCA4的免疫反应性。(B) 5个月大野生型(129/Sv)(上)、Abca4−/−(中)和Mertk−/−(下)小鼠视网膜切片的代表性合并共聚焦图像,分别用Abca4(红色)和Rab5(绿色)抗体进行免疫染色。ABCA4和Rab5在129/Sv和Mertk−/−RPE细胞中均有共定位,如橙色信号所示。在Abca4−/−视网膜切片的RPE中,仅见Rab5免疫反应。白色箭头表示视网膜脱离,白色星号表示Mertk−/−视网膜由于光感受器变性而没有OS。(C)固定hfRPE细胞的代表性共聚焦图像,标记ABCA4(红色)(上)或内体CAV1(绿色)(中)抗体。(下)ABCA4和CAV1的共聚焦合并图像。

图3.ABCA4在RPE- ABCA4-tg/ABCA4−/−小鼠的RPE中表达。

(A) BALB/c、Abca4-/-和RPE-Abca4-tg/Abca4-/-小鼠(均为白化)视网膜和RPE匀浆的代表性免疫印迹与抗Abca4或α-微管蛋白的抗血清反应。神经视网膜总蛋白负荷为10 μg, RPE/eyecup匀浆为25 μg。(B)ABCA4-/-和RPE-Abca4-Tg/ABCA4-/-匀浆中ABCA4蛋白水平归一化为α-微管蛋白,并相对于野生型BALB/c水平呈现;每组6龄小鼠7只。(C)BALB/C(左)、Abca4−/−(中)和RPE-Abca4-Tg/Abca4−/−(右)小鼠视网膜切片的代表性共聚焦图像。RPE中ABCA4的免疫反应性(红色)- ABCA4 - tg / ABCA4−/−显示主要针对RPE的特异性。Abca4-/-和RPE-Abca4-Tg/Abca4-/-小鼠的os层均未被Abca4抗体染色。DAPI核染色为蓝色。

图4.RPE-Abca4- tg /Abca4 - / -小鼠RPE中的类双维甲酸、自身荧光和脂褐素水平降低。

(A-D)从3龄白化小鼠视网膜和RPE匀浆中提取类双维甲酸,采用正相高效液相色谱法进行分析。RPE/eyecup和神经视网膜提取物的代表性HPLC色谱图见SI附录,图S3。注意,RPE-Abca4- tg /Abca4 - / -小鼠RPE中所有类双维甲酸水平较低。(A)总A2E (A2E和反A2E之和)以每只眼皮摩尔表示。(B -D)全反式视黄醛二聚体PE (atRAL-Dimer-PE) (B)、A2PE- h2 (C)和A2PE (D)以每只眼的毫吸光度单位(mAU)表示。数据以mean±SD表示;每组5只;* p < 0.0001, ** p < 0.001;N /s,不显著。(E)使用488 nm激发激光器和500- 545 nm发射滤光片捕获的rpe -脉络膜-巩膜平面支架的代表性共聚焦图像。注意,与Abca4- / - RPE平片相比,RPE-Abca4- tg /Abca4−/−平片的自荧光强度(AF,绿色)降低。抗zo1染色显示RPE细胞边界(蓝色);细胞核用DAPI染色(蓝色);每组6龄小鼠3或4只。(比例尺,20 μm.) (F) 1岁BALB/c(左)、Abca4−/−(中)和RPE-Abca4- tg /Abca4−/−(右)白化病小鼠RPE细胞的代表性电镜图。箭头指向RPE细胞质内电子密度不均匀的多态脂褐质颗粒。BM,布鲁氏膜;N,细胞核。(比尺,2 μm.) (G)测量每100 μm2细胞面积的脂褐素颗粒分数,并从每只眼睛10个相邻的电镜图像中取平均值。数据以mean±SD表示;N = 5 ~ 9只/组;* p = 0.0186;** p < 0.001。

图5.在RPE-Abca4-Tg/Abca4−/−和Abca4−/−小鼠中保留光感受器。

(A)通过光学显微镜获得的1岁白化病小鼠的代表性视网膜图像。(B)每100 μm2细胞面积计算光感受器细胞核总数。注意,与Abca4-/-小鼠相比,RPE -Abca4- tg /Abca4 - / -小鼠的ONL细胞数量增加,表明光感受器变性部分恢复。数据以mean±SD表示;N = 5 - 9只/组;RPE-Abca4-Tg/Abca4−/−vs. Abca4−/−,*P = 0.0319;Abca4−/−vs. BALB/c, **P < 0.0001;RPE-Abca4-Tg/Abca4−/−vs. BALB/c, P = 0.0061。

图6所示。ABCA4在RPE内溶酶体膜中的功能。

(A)正常RPE细胞。在紫红质蛋白水解过程中释放的11cRAL在光腔表面与PE缩合形成11-顺式- n -视黄醛-磷脂酰乙醇胺(11c-N-ret-PE),后者经过异构化形成全反式(at)和11c-N-ret-PE的混合物。两种N-ret-PE异构体都被ABCA4翻转到细胞质表面,其中Nret-PE的水解是由细胞视黄醛结合蛋白(CRALBP)结合11cRAL或视黄醛脱氢酶11型(RDH11)将atRAL还原为atROL的质量作用驱动的。atROL由RPE视觉循环处理,通过卵磷脂视黄醇酰基转移酶(LRAT)酯化生成全反式视黄醇酯,如全反式视黄醇棕榈酸酯(atRP), RPE65异构化生成11-顺式视黄醇(11cROL),视黄醇脱氢酶5型(RDH5)氧化生成11cRAL,并与CRALBP结合。11cRAL使RPE细胞在邻近的光感受器OS中再生视觉色素。(B)Abca4−/−突变型RPE细胞。ABCA4 - / -小鼠或STGD1患者的RPE内溶酶体中缺乏ABCA4会导致视黄醛的清除延迟,从而导致游离视黄醛和N-ret-PE浓度升高。这导致atRAL或11cRAL与N-ret-PE二次缩合形成类双维甲酸。

研究小结:

ABCA4在RPE细胞中表达,并且至少部分ABCA4−/−表型是由RPE表达的ABCA4的缺失引起的。除了光感受器外,RPE细胞也应该作为abca4介导的视网膜变性的治疗靶点。

重要性:

隐性Stargardt黄斑变性(STGD1)和锥杆营养不良是由ABCB4基因突变引起的。ABCA4蛋白是光感受器细胞中的一种翻转酶,有助于消除视黄醛,一种有毒的视觉光产物。

在这里,我们发现ABCA4在小鼠视网膜色素上皮(RPE)中也存在,其丰度约为神经视网膜中的1%。在RPE中表达ABCA4而在光感受器细胞中不表达ABCA4的转基因小鼠显示,在ABCA4 - / -小鼠和inSTGD1患者中观察到的脂褐素积累和光感受器变性均部分恢复。这些观察结果表明,theRPE中的ABCA4可以阻止ABCA4−/−小鼠以及STGD1患者的光感受器变性。

相关信息:

光感受器细胞外段膜盘中包含视色素,正常膜盘不段更新,在视网膜色素变性和某些视网膜病变时,外段膜盘的更新可能出现障碍。

信源:

Tamara L, Lenis,Jane, Hu,Sze Yin, Ng et al. Expression of ABCA4 in the retinal pigment epithelium and its implications for Stargardt macular degeneration.[J] .Proc Natl Acad Sci U S A, 2018, 115: 0.

参考文献

1. Wald G (1968) Molecular basis of visual excitation. Science 162:230–239.

2. Rattner A, Smallwood PM, Nathans J (2000) Identification and characterization of all-trans-retinol dehydrogenase from photoreceptor outer segments, the visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol. J Biol Chem 275:11034–11043.

3. Quazi F, Lenevich S, Molday RS (2012) ABCA4 is an N-retinylidene-phosphatidylethanolamine

and phosphatidylethanolamine importer. Nat Commun 3:925.

4. Sun H, Nathans J (1997) Stargardt’s ABCR is localized to the disc membrane of retinal rod outer segments. Nat Genet 17:15–16.

5. Allikmets R (1997) A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 17:122.

6. Maugeri A, et al. (2000) Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy. Am J Hum Genet 67:960–966.

7. Burke TR, et al. (2014) Quantitative fundus autofluorescence in recessive Stargardt disease. Invest Ophthalmol Vis Sci 55:2841–2852.

8. Young RW, Bok D (1969) Participation of the retinal pigment epithelium in the rod outer segment renewal process. J Cell Biol 42:392–403.

9. Young RW, Bok D (1970) Autoradiographic studies on the metabolism of the retinal pigment epithelium. Invest Ophthalmol 9:524–536.

10. Mata NL, Weng J, Travis GH (2000) Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc Natl Acad Sci USA 97:7154–7159.

11. Boyer NP, et al. (2012) Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E)

accumulate in retinal pigment epithelium in absence of light exposure: Their origin is 11-cis-retinal. J Biol Chem 287:22276–22286.

12. LaVail MM (1976) Rod outer segment disk shedding in rat retina: Relationship to cyclic lighting. Science 194:1071–1074.

13. Stempel AJ, Morgans CW, Stout JT, Appukuttan B (2014) Simultaneous visualization and cell-specific confirmation of RNA and protein in the mouse retina. Mol Vis 20:1366–1373.

14. Hu J, Bok D (2010) Culture of highly differentiated human retinal pigment epithelium for analysis of the polarized uptake, processing, and secretion of retinoids. Methods Mol Biol 652:55–73.

15. Feng W, Yasumura D, Matthes MT, LaVail MM, Vollrath D (2002) Mertk triggers uptake of photoreceptor outer segments during phagocytosis by cultured retinal pigment epithelial cells. J Biol Chem 277:17016–17022.

16. Duncan JL, et al. (2003) An RCS-like retinal dystrophy phenotype in mer knockout mice. Invest Ophthalmol Vis Sci 44:826–838.

17. Sethna S, et al. (2016) Regulation of phagolysosomal digestion by caveolin-1 of the retinal pigment epithelium is essential for vision. J Biol Chem 291:6494–6506.

18. Haeseleer F, et al. (2002) Dual-substrate specificity short chain retinol dehydrogenases from the vertebrate retina. J Biol Chem 277:45537–45546.

19. Kaylor JJ, et al. (2017) Blue light regenerates functional visual pigments in mammals through a retinyl-phospholipid intermediate. Nat Commun 8:16.

20. Quazi F, Molday RS (2014) ATP-binding cassette transporter ABCA4 and chemical isomerization protect photoreceptor cells from the toxic accumulation of excess 11-cis-retinal. Proc Natl Acad Sci USA 111:5024–5029.

21. Anderson DMG, et al. (2017) Bis(monoacylglycero)phosphate lipids in the retinal pigment epithelium implicate lysosomal/endosomal dysfunction in a model of Stargardt disease and human retinas. Sci Rep 7:17352.

22. Chen C, Thompson DA, Koutalos Y (2012) Reduction of all-trans-retinal in vertebrate rod photoreceptors requires the combined action of RDH8 and RDH12. J Biol Chem 287:24662–24670.

23. Harper WS, Gaillard ER (2001) Studies of all-trans-retinal as a photooxidizing agent. Photochem Photobiol 73:71–76.

24. Radu RA, et al. (2008) Accelerated accumulation of lipofuscin pigments in the RPE of a mouse model for ABCA4-mediated retinal dystrophies following Vitamin A supplementation. Invest Ophthalmol Vis Sci 49:3821–3829.

25. Weng J, et al. (1999) Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 98:13–23.

26. Calame M, et al. (2011) Retinal degeneration progression changes lentiviral vector cell targeting in the retina. PLoS One 6:e23782.

27. Natkunarajah M, et al. (2008) Assessment of ocular transduction using single-stranded

and self-complementary recombinant adeno-associated virus serotype 2/8. Gene Ther15:463–467.

28. Carr AJ, et al. (2009) Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One 4:e8152.

29. Schwartz SD, et al. (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: Follow-up of two open-label phase 1/2 studies. Lancet 385:509–516.

30. Boulanger A, Liu S, Henningsgaard AA, Yu S, Redmond TM (2000) The upstream region of the Rpe65 gene confers retinal pigment epithelium-specific expression in vivo and in vitro and contains critical octamer and E-box binding sites. J Biol Chem 275:31274–31282.

31. Stec DE, Morimoto S, Sigmund CD (2001) Vectors for high-level expression of cDNAs controlled by tissue-specific promoters in transgenic mice. Biotechniques 31:256–258,260.

32. Illing M, Molday LL, Molday RS (1997) The 220-kDa rim protein of retinal rod outer segments is a member of the ABC transporter superfamily. J Biol Chem 272:10303–10310.

33. Radu RA, et al. (2011) Complement system dysregulation and inflammation in the retinal pigment epithelium of a mouse model for Stargardt macular degeneration. J Biol Chem 286:18593–18601.

34. Parish CA, Hashimoto M, Nakanishi K, Dillon J, Sparrow J (1998) Isolation and onestep preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. Proc Natl Acad Sci USA 95:14609–14613.

35. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675.

36. Lenis TL, et al. (2017) Complement modulation in the retinal pigment epithelium rescues photoreceptor degeneration in a mouse model of Stargardt disease. Proc Natl Acad Sci USA 114:3987–3992.

END

文案 | 刘卫勤

排版 | 姜笑南

审核 | 姜笑南

发布|姜笑南

世界生命科学大会

RECRUIT

关注我们,获取生命科学

学界前沿|促进更多的学术交流与合作

业界前沿|促进更快的产品创新与应用

政策前沿|促进更好的治理实践与发展

我们期待你的加入

0 阅读:0

世界生命科学大会

简介:“探寻生命科学前沿技术,助力医疗品牌影响全球”