随着铝合金应用范围的扩大,铝合金焊接技术有了较大发展,目前主要有钨极氩弧焊(TIG)、熔化极惰性气体保护焊(MIG)、激光焊(LBW)、搅拌摩擦焊(FSW)。
铝合金焊接
钨极氩弧焊
钨极氩弧焊(Tungsten Inert Gas Welding,TIG)是典型的惰性气体保护焊,是最常用的焊接方法。焊接时以钨极及焊接作用面为电极,在两极间通入氦气或者氩气作为保护气来保护电弧,通过瞬时高压放电来融化丝材及母材,进行铝合金部件的焊接成型,以及铸件铸造缺陷的焊补和修复。
主要具有以下技术特点:
1.操作方便、灵活可控、适应于各种工况环境、成本较低;
2.热影响区较窄,在送丝充分的情况下焊接接头的变形量较小,接头的综合性能较高;
3.焊接工艺性能好、稳定,焊缝形成致密美观。
熔化极惰性气体保护焊
MIG(GMA-Gas Metal Arc Welding)与TIG都是惰性气体保护焊,不同之处在于TIG焊采用钨极作为固定电极,而MIG焊采用填充的焊丝材料本身作为电极。
铝合金的熔化极惰性气体保护焊过程中,电压电流作用于焊丝电极端部,与母材间产生瞬时高压,将母材及坡口部融化,焊丝端部的熔滴脱落,垂直过渡到母材熔池上,形成焊接区。
但铝合金MIG焊的应用过程受到较大限制,原因在于铝丝柔软导致送丝性差,且熔融铝在焊接时容易形成“悬而未滴”的现象,易造成液滴飞溅。其优点在于MIG焊比TIG的焊接速度要快,焊接大型工件时焊运动幅度小,通过调整送丝速度焊接效率可达每分钟数米。
激光焊
激光焊接(Laser Beam Welding LBW)利用高能量的激光脉冲对材料进行微小区域内的局部加热,激光辐射的能量通过热传导向材料的内部扩散,将材料熔化后形成特定熔池,凝固后材料连接为一体。
激光焊接的优点在于焊接作用点小,高功率热源集中作用,有能力进行厚板焊接,热影响区窄且焊接变形小。但与此同时,激光焊对于焊接定位的要求较高,焊接装置昂贵,焊接成本较高,对于铝镁这类金属材料激光反射率较高,直接焊接比较困难。
用不同功率密度的激光照射材料表明,当工件上的功率密度达到107W/cm2以上,加热区内的金属会在极短的时间内被气化,气体在熔池内汇聚成一个小孔,并以此小孔为中心进行热量传递,在小孔附近形成熔池,这就是激光深熔焊的“匙孔(keyhole)”效应。为避免此现象造成的熔池不均匀问题,可以通过减小激光能量、增大焊接速度或控制熔核区的重熔,以去除熔合区的气泡,减少气孔的产生。
搅拌摩擦焊
搅拌摩擦焊(Friction stir Welding,FSW)是在传统摩擦焊接技术基础上形成的新型固相连接技术,其原理是一个非耗损的特殊形状的由搅拌针和轴肩组成的搅拌头,旋转扎入待焊接界面,当搅拌头沿焊缝前进时,焊接材料温度升高,塑化金属在机械搅拌和顶锻的作用下发生强烈的塑性变形,经过扩散与再结晶之后形成致密的固相连接。
与传统的焊接方法相比,FSW技术具有以下优点:
1.焊接温度低,焊接变形小;
2.焊缝力学性能好;
3.焊接工艺简单经济环保。